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Abstract
Crop Protection is the key element to achieve food security. Many studies 
have been conducted over the decades to avoid crop losses during pre- 
harvest and post-harvest stages. Crop losses due to pest attack and plant 
disease spread, reduces the agriculture production and possess a direct 
impact on the economy of a country. Deployment of Artificial Intelligence (AI) 
based pest control strategies to detect pest species is under research. In this 
manuscript, deep learning based EfficientNetB7 architecture and transfer 
learning methodology is used to develop a real-time resource-efficient pest 
detection system. EfficientNetB7's innovative compound scaling technique 
has managed to balance efficiency in terms of computations and accuracy 
to effectively classify pests through images with minimal resources.  
The proposed system uses appropriate fine-tuning of training parameters 
and regularization mechanisms such as optimizers, data augmentation, to 
effectively develop a pest detection system. The trained model is ported on 
to STM32 microcontroller using CubeAI in STM32CubeIDE. The model is 
assessed by using a publicly available dataset, and a classification accuracy 
of 93.5% is achieved. This system not only automates pest detection but 
also provides a match percentage for the identified pests, thus supporting 
precision agriculture. Future work includes increasing the dataset and 
exploring edge AI techniques for decentralized decision-making. This 
manuscript showcases the transformative potential of EfficientNetB7 in 
precision agriculture, offering a scalable, cost-effective, and sustainable 
solution for the detection of pests with relevant broader impacts on 
agricultural automation practices.
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Introduction
Convolutional Neural Networks (CNNs) have 
become a valuable resource for processing visual 
information and are applied to real tasks like 
object detection and classification, segmentation. 
The feature selection process in images is useful 
since most applications require visual perception 
of a spatial nature. CNNs learn the local features 
and spatial information effectively which is highly 
demanded for applications like pest detection. 
However, with millions of parameters, training 
CNNs from scratch poses challenges like overfitting 
and prolonged training durations that sometimes 
require high-performance hardware like TPUs.1 With 
the advanced AI technology and computer vision 
algorithms deep learning strategies are deployed 
to extract the features of similar pest species 
effectively as compared to the conventional HOG 
and scale invariant mechanisms which exhibited 
shallow learnings.2 Many machine learning and deep 
learning based approaches3 are available for pest 
detection and a type of semi-supervised learning is 
Transfer learning.4 

Many practical applications in the field of agriculture,5,6,7  
medical imaging8 does not have access to large 
amounts of labelled datasets or even the computing 
power needed for training deep networks from 
scratch. This is particularly more pronounced in 
resource-constrained environments, such as small  
businesses or agricultural sectors, where the implemen- 
tation of traditional CNNs becomes impractical.

Transfer learning thus acts as a good solution to 
these problems because it allows for the adaptation 
of a pre-trained model, such as those trained on 
ImageNet, to new tasks by using smaller datasets. 
Improvement in performance with less data and 
computing resources is also achieved through 
retaining the early layers, which extract general 
features, and fine-tuning9 the later layers for specific 
applications.10 A recent article11 has deployed transfer  
learning-based tomato disease classification method 
with optimal final tuning and has achieved significant 
results.

Transfer learning is implemented using Google’s 
EfficientNet architecture, which uses a novel 
compound scaling approach to scale model depth, 
width, and resolution simultaneously.12 The largest 

member of this architecture family, EfficientNetB7, 
achieves leading-edge accuracy at minimal 
computational cost. The authors have suggested 
a novel compound scaling technique to increase 
the accuracy and efficiency of base CNNs. After 
an in-depth analysis on model scaling, the authors 
conclude that optimizing network depth, breadth, and 
resolution is essential to enhance performance. They 
use this observation to develop a baseline network 
called EfficientNet and to scale up existing CNN 
based architectures like MobileNets and ResNets 
for image classification tasks. They also introduce 
a straightforward yet efficient compound scaling 
method that uniformly scales all three dimensions 
using a set of fixed scaling coefficients. Showcasing 
the significance of balancing network dimensions for 
building accurate and efficient ConvNets, the scaled 
EfficientNet models perform significantly better 
than other CNN based models on the ImageNet 
classification task. The authors go one step further 
and employ neural architecture search to create a 
baseline network, which is then scaled  to generate 
the family of EfficientNet models. They highlight that 
success of their scaling strategy greatly depends 
on the baseline network. The architecture also 
possesses an outstanding transfer learning ability, 
required to work with lesser number of images 
captured on the agricultural fields.

A balanced scaling approach lets it effectively 
capture intricate patterns in images without 
excessive resource utilization, making it suitable for 
either large-scale or resource-constrained tasks.13

With applications ranging from agriculture to health14,15  
EfficientNetB7 and transfer learning approach16 has 
impacted several sectors quite impressively. For 
example, within the agricultural sector, its primary 
uses have been crop disease detection and pest 
classification wherein labelling datasets are often 
limited or even highly specialized.17 The models 
it offers allow for precise yet efficient detection of 
pests, a long-term challenge in precision agriculture.

This work aims to explore the feasibility of using 
EfficientNetB7 for real-time agricultural pest 
detection, specifically its computational efficiency 
and accuracy. The proposed system would combine 
EfficientNetB7 with STM32 microcontrollers in a 
cost-effective and scalable way to identify pests, 
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constituting an important step toward bringing 
modern machine learning techniques to agricultural 
automation.

Deep CNNs for image-based plant disease detection 
is used over more conventional ones because deep 
learning has made significant strides in computer 
vision. Using a dataset of 54,306 photos of 26 
illnesses and 14 crop species from the PlantVillage 
project, the scientists trained a deep network to 
achieve relatively higher accuracy on a test set. 
This indicates that using a smartphone agricultural 
diseases can be diagnosed and treated from 
anywhere in the world. Even though the training 
requires a lot of processing power, the classification 
can be completed easily on a smartphone, which 
makes it suitable for mass use of the accessible 
application. The authors have also given  the 
shortcomings of the existing approach such as its 
validation in real-field environments. 

SVM based pest  identification is performed by the 
author  Ebrahimi in his manuscript where the error 
rate is minimized by enhancing the color intensity 
of the features.18 The incorporation of augmentation 
techniques by the author Kusrini in classification 
of pests in mango farms is found to improve the 
accuracy metrics significantly.19

Another work described the potential use of 
EfficientNet architecture’s transfer learning approach 
along with an attention mechanism such as Grad 
CAM ++20 has shown an enhanced performance in 
identifying the image based nutrient deficiencies in 
plants with an accuracy of 98.65%.  

The EfficientNet B7 architecture was selected 
because it outperformed other cutting-edge deep 
learning models. To increase the classification 
accuracy, the framework investigated the impacts of 
six distinct optimization algorithms: SGD, RMSProp, 
Adagrad, Adam, Adadelta, and Nadam. Utilizing a 
softmax classifier and the Nesterov-accelerated 
adaptive moment estimation (Nadam) optimizer,21 
the suggested framework produced the best results, 
achieving average F1-scores of 98%, average recall 
of 97.3%, average precision of 99.3%, and test 
accuracy of 99%.

ImageNet Large Scale Visual Recognition Challenge 
serves as a crucial benchmark for visual recognition in 
the field of computer vision. This challenge promotes 
progress in deep learning and image classification 
by offering a massive dataset with over 14 million 
labeled images spanning 20,000 categories. 
The methodologies and outcomes of various 
competing algorithms, highlighting the transition from 
conventional machine learning approaches to deep 
convolutional neural networks (CNNs) depicts a 
significant performance enhancement image based 
applications. Many research works emphasize the 
importance of both data quality and quantity in 
model training, showcasing that deeper network, 
like AlexNet, can achieve superior accuracy. 
Overall, the ImageNet challenge has stimulated 
research and innovation in visual recognition, 
resulting in significant advancements across diverse 
applications.

With the above studies and surveys the methods 
and techniques are carefully selected for performing 
pest classification with lesser number of images and 
in resource constrained environment.

Materials & Methods
Hardware Requirements
Camera ov2640
The camera module sensor is of type CMOS. To 
analyze the performance of the model, it should be  
validated on low resolution images and hence a basic  
camera with a Resolution of 2 Megapixels (1600x 
1200)- is used. The camera uses serial interface: ad 
the output format supported includes YUV, JPEG, 
RGB with a  30 fps frame rate.

STM32 Nucleo-L476RG Microcontroller: The Core 
includes ARM Cortex-M4- microcontroller with 80 
MHz frequency and a limited memory of 128KB 
SRAM. This controller supports lesser operating 
voltage of 3.3V and Interfaces such as USART, SPI,  
I2C.Effective port and low power modes are the 
highlights of the controller to be used as edge devices  
in real field environment. This controller supports 
the conversion of TensorFlow and Keras framework 
based model development in TFLite and TFLite 
Micro formats.STM32Cube IDE is used to develop 
and compile the firmware codes.
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Dataset
Kaggle platform hosts many publicly available 
pest image datasets.IP102 is a publicly available 
image dataset used widely for agriculture based 
classification applications with 102 pest classes 
and 75K images. This is a class imbalanced dataset 
where the number of images across each class is 
different. This resourceful dataset is used in this study  
as the images are with various resolution, brightness, 
intensity with more similar visuals of pest species. 
This proposed work focusses only on 7 classes of 
Pests of IP102 dataset which includes Aphids, Army- 
worm, Beetle, Mites, Sawfly, Stemborer and Stemfly. 

Implementation
CNN based algorithms and in specific, EfficientNet is 
frequently highlighted in literature surveys because 
of its exceptional performance on benchmark 
datasets, achieving high levels of accuracy while 
maintaining reduced computational demands. 
Its unique compound scaling approach allows 
for a balanced adjustment of depth, width, and 
resolution, making it versatile for various resource 
constraints, which is particularly advantageous 
for use in embedded systems such as STM32 
microcontrollers. Furthermore, the architecture 
of EfficientNet is conducive to transfer learning, 
enabling researchers to harness pre-trained models 
to improve outcomes with smaller, specialized 
datasets. These characteristics make EfficientNet an 
attractive option for applications like pest detection, 
where both efficiency and accuracy are vital. The 
compound scaling technique of EfficientNetB7 
is applied for pest classification. The model 
architecture adjusts depth, width, and resolution to 
balance performance and computational efficiency. 
The feature extraction in transfer learning approach 
is used where the early layers of EfficientNet 
trained on ImageNet is preserved, and only the 
final classification layer is fine-tuned for pest 
classification. The later layers are used with fine-
tuning to adapt to the pest dataset but keep with 
the general feature extraction capability of the initial 
layers. The dataset used for pest classification was 
obtained from Kaggle. It includes 10,000 labeled 
images of pests of various classes such as aphids, 
whiteflies, caterpillars etc. The distribution of Images 
is such that the Training set includes 70% of Images 
(7,000 images) and Validation set includes 20% of 
Images (2,000 images) and the Test set accounts 
for 10% of images (1,000 images). All the Images 

are standardized to JPEG format and resized 
to  224x224 pixels to allow for compatibility with 
EfficientNetB7 input. By applying regularization 
and optimization techniques the model is trained 
and saved in .h5 format. The trained model using 
TensorFlow and Keras framework is converted to 
TensorFlowLite format for importing the model as 
an application on to the smartphone. 

Preprocessing Data
Augmentation of Images
To enlarge the dataset and avoid overfitting, the 
following augmentation procedures were carried out 
on an Image Data Generator.

• Random rotations, flips, and zooms.
• Changes in brightness and contrast.

The transformation formula used:
x→augment(x)=x·T+ϵ  ...(1)

Normalization
Pixel values were normalized to the range [0, 1] to 
normalize the input for the EfficientNetB7 model.

Training Method
Adam optimizer with the learning rate of 0.001. 
Binary cross-entropy loss function is used, and it 
is given as 

L(y,y^)=−[y·log(y^)+(1−y)·log(1−y^)]  ...(2)

The Batch Size is32 images per batch. The model is 
trained for 50 epochs for convergence TensorFlow 
and Keras libraries is used and the learning rate is 
fixed as 0.5.

Performance Metrics
The following metrics were used to evaluate the 
performance of the model

• Accuracy: The number of correctly classified 
images.

• Precision: The number of true positives 
among the predicted positives.

• Recall: The number of true positives among 
the actual positives.

• F1-Score: The harmonic mean of precision 
and recall.

• Confusion Matrix: To get a detailed analysis 
of the classification performance.
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The system performed real-time classification using 
data streamed from the OV2640 camera module 

interface to STM32 controller. Flow chart of the 
model deployment on to STM32 is shown in Fig.1

Fig. 1: Pest classification model deployment on to STM32

Results
By combining the lightweight, power-efficient STM32 
microcontroller with the EfficientNetB7 architecture, 
the system showed optimal balance between 
computational efficiency and accuracy. The project 
utilized the Kaggle dataset publicly available for 
training and validation. The model is trained for 20 

epochs, and the results were evaluated on training 
and validation datasets. Key performance metrics 
such as accuracy, loss, precision, recall, and F1-
score were computed to measure the efficiency 
of the classification. Figure 2 shows the model 
performance while classifying pests

Fig. 2: Accuracy and loss – Pest classification
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• Accuracy: 93.5% (validation set)
• Loss: 0.47 (validation set)
• Precision: 92.3%
• Recall: 94.1%
• F1-Score: 93.2%

Discussion 
The graph in Fig. 2  also depicts a sharp rise in the 
training and validation accuracy within the first 5 
epochs, stabilizing at around 93% after epoch 15. 
Validation loss decreased tenfold from the initial 
value and reached about 0.47 by the end of training.
The yaxis has normalized data representation and 
so the scale is different between loss values and 
epochs. Initial loss values were about 1.75 and 
decreased exponentially.

An overall accuracy of 93.5% is achieved. Results 
were strong under a range of lighting conditions at 
dataset preparation time, thus further emphasizing 
the transfer learning method used in EfficientNetB7.

The study's results surpass conventional pest 
detection models like SVM and ResNet50, which 
typically achieve validation accuracies of 80-85% 
on similar datasets. The compound scaling strategy 
employed in EfficientNetB7 enables superior 
accuracy with reduced computational overhead.

Challenges
Diversity
The dataset included limited pest species, potentially 
affecting real-world performance in diverse 
agricultural settings. Expanding the dataset could 
address this limitation.

Environmental Conditions
The variability in illumination and weather could 
degrade the accuracy of such a  model while being 
in field deployment. Augmentations to models would 
have to be tailored based on specific domains when 
these kinds of variabilities exist.

STM32 - Inference Model Efficiency
STM32 runs inference efficiently and real time. 
Latencies were near minimal and showed up good  
promise in edge oriented applications. Still, computa-
tional strength at such microcontrollers means this 
might be not scalable towards large Dataset models.

Conclusion
This study successfully implemented an efficient, 
lightweight pest detection system combining the 
EfficientNetB7 model and STM32 microcontroller. 
The system is real-time, cost-effective, and accurate, 
allowing for support in precision agriculture through 
reducing dependence on poisonous pesticides and 
empowering farmers to react to infestations sooner.

Future Directions
• Extending the dataset to include more diversity 

of pests and environmental conditions.
• Exploring edge AI solutions to enable full 

localized decision-making processes.
• Deep exploration of the deployment of 

hybrid architectures: efficiently combining 
EfficientNetB7 with more compact models for 
improved scalability and performance.
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