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Abstract 
Tribolium castaneum Herbst and Rhyzopertha dominica Fabricius are 
significant pests causing both qualitative and quantitative deterioration 
of stored products. The reliance on synthetic fumigants to control these 
pests poses numerous risks to human health and the environment. Given 
cassava's status as a cyanogenic plant, this study screened nine cassava 
varieties to isolate insecticidal compounds effective against stored product 
pests. Both young and mature leaves were subjected to hydrogen cyanide 
extraction, a potential fumigant approved by the Central Insecticidal Board 
(CIB) of India. Extraction was performed using two methods: direct leaf 
crushing at room temperature and mechanical extraction with a biopesticide 
extraction plant at ICAR-Central Tuber Crops Research Institute. Among the 
varieties, Sree Swarna exhibited the highest cyanogen content, while Sree 
Jaya had the least. Laboratory assays demonstrated that R. dominica was 
more susceptible to the cassava-derived bio-fumigant than T. castaneum. 
These findings suggest that bio-fumigants from cassava leaves are a viable 
alternative to synthetic fumigants for managing stored product pests.
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Introduction 
Post-harvest management of stored products is 
crucial for ensuring food security for the growing 
global population. Numerous insect species, over 
a hundred, are known to infest stored products.1,2 

Among these, Tribolium castaneum  Herbst (red flour 
beetle) and Rhyzopertha dominica Fabricius (lesser 
grain borer) are identified as the most destructive 
pests in tropical and subtropical regions, leading to 
substantial economic losses.3,4
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Synthetic fumigants are extensively utilized in 
warehouses due to their effective dispersion and 
penetration properties. Major fumigants include 
carbonyl sulfide, methyl iodide, sulfuryl fluoride, 
methyl bromide, and phosphine.5 However, the use  
of methyl bromide has been banned since 2005 under 
the Montreal Protocol due to its adverse effects on 
the ozone layer and ecosystem. Phosphine, derived 
from aluminium or magnesium phosphide, is widely 
employed for grain disinfestation but has led to the 
development of resistance in insect populations 
with its continuous use.6,7 Consequently, there is a 
global effort to identify safe, economical, and viable 
alternatives to synthetic pesticides.

Plant-based phytochemicals are gaining attention 
due to their high biodegradability, low toxicity to non- 
target organisms, and easy accessibility. These 
characteristics make them suitable for protecting 
agricultural products from a variety of insect 
pests.8,9,10,11,12,13 Secondary metabolites such as 
alkaloids, terpenoids, and phenolics, although 
not involved in primary physiological processes 
like photosynthesis or growth, have documented 
bioactivity against insects, nematodes, and 
microorganisms.14,15 Hydrocyanic acid, produced 
through the enzymatic conversion of cyanogenic 
glycosides—a group of nitrile-containing plant 
secondary compounds—exhibits fumigant action 
against stored-product pests.16,17,18,19,20 Despite over 
300 cyanogenic plant species, including bamboo, 
apple seeds and cassava, the practical use of these 
compounds in pest management is hindered by 
limited material availability, extraction challenges, 
and low extractability.

Cassava leaves, although abundant, remain 
underutilized. This study aims to screen nine varieties  
of cassava leaves for the isolation of insecticidal 
molecules and evaluate their efficacy against the 
most publicized stored grain pests viz. T. castaneum 
and R. dominica

Materials and Methods
Maintenance of Test Insects
T. castaneum and R. dominica (Figure 1) were 
collected from stock cultures and maintained in the 
laboratory at 32±2°C and 70±5% relative humidity. 
T. castaneum was reared on wheat flour, while  

R. dominica was reared on black gram. Approximately 
100-150 adults of each species were subcultured in 
500 ml plastic containers containing their respective 
food sources for feeding and oviposition. The 
container mouths were covered with muslin cloth 
secured with rubber bands. Infested grains were 
separated and kept for adult emergence. Cohorts 
of 50 adult insects, two weeks old, were used for 
each bioassay analysis.

Fig.1: Adults of A) Tribolium castaneum and 
B) Rhyzopertha dominica

Isolation of Bio-Fumigant from Cassava
Tender shoots and leaves from nine cassava varieties  
(Sree Swarna, Sree Pavithra, Sree Suvarna, Sree 
Prabha, Sree Harsha, Sree Sahya, Sree Jaya, M4, 
and CMR4) (Figure 2) were collected from the ICAR- 
CTCRI, Kerala, for the isolation and quantification 
of insecticidal compounds.

Direct leaf crushing method: Young and mature 
leaves (100 g each) were chopped into approximately 
0.5 cm pieces and transferred into 500 ml conical 
flasks. Freshly prepared alkaline picrate paper (5×1 
cm) was suspended in each flask, which was then 
tightly sealed and kept at room temperature (31°C, 
RH 70%) for 24 hours. The hydrogen cyanide (HCN) 
content was quantified using the alkaline picrate 
paper method.21,22,23 with modifications. The picrate 
paper was removed, washed with 5 ml distilled water 
using a micropipette, and centrifuged at 10,000 
rpm for 10 minutes. The optical density (OD) of the  
supernatant was measured at 510 nm using a 
spectrophotometer (Make: PerkinElmer Lambda 25).  
The experiment was replicated thrice, and HCN 
content was calculated using the following calibration 
equation.21 CN (ppm)=555.821×OD
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selected varieties (Sree Swarna, Sree Pavithra, 
Sree Suvarna, Sree Prabha, Sree Harsha, Sree 
Sahya, Sree Jaya, M4, CMR4) were loaded into the 
mixer-cum-grinder unit of the biopesticide extraction 
plant and pulverized with a predetermined quantity  
of water. Cyanogen extraction followed a standardized 
protocol (patent pending). The liberated bio-fumigant 
passed through moisture-absorbing chambers and 
was compressed into a 4 kg portable tank. The quantity  
of cyanogen liberated at 80, 85, 90, 95, and 100°C 
was estimated using the picrate paper method.

Detection of Cyanogen by Gas Chromatography
The liberated HCN was converted into cyanogen 
chloride (CNCl) using Chloramine-T solution (0.77 
g in 50 ml deionized water). The cassava bio-
fumigant (CBF) was bubbled through 20 ml of 0.1  
M sodium hydroxide solution for 15 minutes to 
convert it into sodium cyanide. After 10 minutes, 0.3 
ml of Chloramine-T solution and 3 ml of n-hexane 

Fig. 2: Leaf morphology of cassava varieties employed in the study:  A) Sree Swarna, 
B) Sree Pavithra, C) Sree Suvarna, D) Sree Prabha, E) Sree Harsha, F) Sree Sahya, 

G) Sree Jaya, H) M4, and I) CMR4

Mechanical isolation: The distillation unit at CTCRI 
(Figure 3) was used for the mechanical extraction 
of cyanogen from cassava leaves. Young and 
mature cassava leaves (8 kg each) from the nine 

Fig. 3: The bio pesticide distillation unit at 
ICAR-CTCRI
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were added as an extraction solvent for cyanogen 
chloride, mixed thoroughly, and left for 20 minutes 
to separate the active component. A standard 
solution was prepared with 500 μg L-¹ cyanogen 
ion (potassium cyanide) and 50 ml of 0.1 M sodium 
hydroxide solution. Samples (1 μl) were analysed 
by gas chromatography (Perkin Elmer, Clarus 580) 
using nitrogen as the carrier gas at a flow rate of 3.0 
ml min-¹ in split-less mode24

Bioassay on the Efficacy of Active Principles: 
Cohorts of 50 adults and larvae of T. castaneum 
and R. dominica reared in the laboratory were 
placed in polypropylene bags (20 × 15 cm), each 
containing a strip of alkaline picrate paper (5 × 1 
cm). Fumigation was performed for 1-10 minutes 
at one-minute intervals by flushing the bags with 
CBF stored in portable cylinders. Control bags 

were flushed with atmospheric air. The experiment 
was replicated thrice, and mortality was recorded 
from 5 to 90 minutes after treatment (MAT). HCN 
concentration was estimated using the picrate paper 
method21. Lethal concentration was calculated by 
probit analysis.

Statistical analysis was done using IBM SPSS 
Software Version 25 available from ICAR-CTCRI. 
The comparison studies were done using Duncan’s 
multiple range tests- ANOVA.

Results and Discussion 
Quantification of cyanogen in bio-fumigant from 
different cassava varieties: The chromatogram at a 
retention time of 4.7 minute ensured cyanogen is one 
of the active principles in CBF (Figure 4). 

Fig. 4: A. Gas chromatogram of potassium cyanide represented as cyanogen chloride; 
B. Gas chromatogram of cassava bio fumigant represented as cyanogen chloride.

Direct Leaf Crushing Method
Cyanogen content in both young and matured leaves 
was significantly higher in Sree Swarna than the 
other varieties evaluated (Table 1). Concentration  
of cyanogen in young leaves varied from 245.8ppm 
in Sree Swarna to 87.1ppm in Sree Jaya; however, 
its difference among Sree Suvarna, Sree Harsha and 

Sree Sahya were found not significant. There was a 
significant variation in the extractability of cyanogen 
between young and matured leaves. As in the case 
of matured leaves, significantly higher quantity  
of cyanogen was noticed in Sree Swarna (288.7ppm) 
and it was lowest in Sree Jaya (28.8ppm).
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X̅±SD, Duncan’s multiple range tests; letters of the 
same alphabet in the same column are statistically 
not significant; Replication: 03 nos./ variety.

The young leaves of Sree Suvarna, Sree Harsha, 
Sree Sahya, Sree Jaya, M4 and CMR4 had 

significantly higher level of cyanogen content than 
their matured leaves (Figure 5); whereas, it was 
higher in matured leaves of Sree Swarna and Sree 
Prabha, but no significant difference was noticed 
between young and matured leaves of the variety 
Sree Pavithra. 

Table 1: Concentration of HCN (ppm) in cassava 
leaves (Direct crushing method)

Variety 	 Young leaf	 Matured leaf

Sree Swarna	 245.8±8.6a	 288.7±8.2a

Sree Pavithra	 198.3±10.8c	 177±4.4c

Sree Suvarna	 208.1±7.4bc	 95.4±7.1f

Sree Prabha	 106.4±6.6de	 252.5±11b

Sree Harsha	 209.2±9.2bc	 153.4±6.1d

Sree Sahya	 203.2±17.3bc	 100.8±7.7f

Sree Jaya	 87.1±4.9e	 28.8±7.1h

M4	 221.1±18.7b	 125.2±8.6e

CMR4	 112.8±12.6d	 44±6.5g

p-Value	 <.0001	 <.0001
CV (%)	 6.63	 4.93
SE(d)	 9.569	 5.662
LSD at 5%	 20.286	 12.003

Fig. 5: Cyanogen content of young and matured leaves of all 
the selected variesties of Cassava

Mechanical Isolation
Irrespective of variety, a positive trend between 
temperature and the amount of cyanogen liberated 
was noticed (Figure 6). The alkaline picrate test 

revealed that liberation of cyanogen starts at 80 
⁰C and reaches maximum at 100 ⁰C. After this 
temperature we observe a uniform yield.
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High concentration of HCN was extracted from the 
variety Sree Swarna in both young and matured 
leaves (Table 2), and it was least in the variety 
Sree Jaya. Extractability of cyanogen was higher in 

the young leaves than in the matured leaves of the 
varieties Sree Pavithra, Sree Suvarna, Sree Harsha, 
Sree Sahya, Sree Jaya, M4 and CMR4 (Table 2 & 3).

Fig. 6: Concentration of HCN at different temperature on young and mature 
leaf of Sree Swarna, Sree Suvarna and Sree Harsha

Table 2: Concentration of HCN isolated from the young leaves of cassava 
at different temperature.

Temperature (⁰C)

Variety  	 80	 85	 90	 95	 100

Sree Swarna	 182±8a	 194±5.6 a	 320.3±8.1a	 425.4±20.3a	 595.3±7.5a

Sree Pavithra	 117.2±6cd	 133.7±5.7c	 199.1±13.2d	 276.1±15.5e	 331.7±12.3e

Sree Suvarna	 147.5±8b	 195.9±5.7a	 250.1±23.2c	 366.9±10.1bc	 436.5±8.6b

Sree Prabha	 57.1±9f	 81.7±7.1e	 147.6±5.7e	 219.9±9.3F	 233.1±7g

Sree Harsha	 112.7±10d	 134±11c	 211.5±9.2d	 340.2±10.5d	 431.4±4.9bc

Sree Sahya	 129±7c	 135.5±8.8c	 313.6±10ab	 370.2±4.8b	 414.2±13c

Sree Jaya	 39.33±9.8g	 58.2±3.1f	 62.7±6.8f	 107.8±5.9g	 129.2±2.4h

M4	 118.3±5.6cd	 157.1±6.6b	 297.1±9.7b	 347.8±7.4cd	 354.3±11.6d

CMR4	 87.4±4.5e	 118.9±2.7d	 127.8±5.6e	 277±22.1e	 269.6±15.5f

p-Value	 <.0001	 <.0001	 <.0001	 <.0001	 <.0001
CV (%)	 7.43	 4.72	 5.37	 3.85	 2.88
SE(d)	 6.678	 5.177	 9.41	 9.551	 8.345
LSD at 5%	 14.157	 10.975	 19.948	 20.247	 17.691

X̅±SD, Duncan’s multiple range tests; Letters of the same alphabet in the same column are statistically 
not significant; Replication: 03 nos./ variety.
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Bioassay on the Efficacy of Active Principles
As the Sree Swarna was found highest extractability 
of cyanogen, this variety was used for further study.  

A positive correlation was noticed between mortality 
of the target pests and exposure time of CBF  
(Figure 7). 

Table 3: Concentration of HCN isolated from the matured leaves of cassava 
at different temperature

Temperature (⁰C)

Variety  	 80	 85	 90	 95	 100

Sree Swarna	 213.9±12a	 237.78±7.8a	 366.5±10.7a	 483.2±17.5a	 629.1±18.4a

Sree Pavithra	 87.8±7.8c	 91±4.7de	 117.2±6.6d	 217.1±16.1d	 225.8±22.8e

Sree Suvarna	 66.5±6.6d	 86.7±7.1e	 154.9±7.8c	 203.1±6.5De	 307.3±6.8c

Sree Prabha	 167.1±8.3b	 175±4.1b	 193.9±7.1b	 248.9±17.2c	 274.2±6.2d

Sree Harsha	 71.7±11.2d	 101.1±8.7e	 156.3±7.5c	 187.8±8.6e	 324.6±9.2bc

Sree Sahya	 48.5±9.3e	 63.2±3.5f	 187.2±7.1b	 312.2±13.3b	 326.9±14.2b

Sree Jaya	 14.9±5.8f	 31.2±7g	 43.6±5.1e	 51.5±2g	 56.4±3.1g

M4	 84.8±3.1c	 116.8±6.1c	 164±7c	 213.1±15.2d	 224.8±9.4e

CMR4	 21.8±1.9f	 28.7±3g	 44.3±6.8e	 110±5.8f	 124±10.6f

p-Value	 <.0001	 <.0001	 <.0001	 <.0001	 <.0001
CV (%)	 8.37	 5.7	 4.48	 5.59	 3.79
SE(d)	 5.903	 4.821	 5.809	 10.287	 8.567
LSD at 5%	 12.513	 10.22	 12.314	 21.808	 18.162

X̅±SD, Duncan’s multiple range tests; Letters of the same alphabet in the same column are statistically 
not significant; Replication: 03 nos./ variety.

Fig. 7: Mortality of test insects at different time of exposure

Mortality of T. castaneum started at 5 Minutes after 
treatment (MAT) with a concentration of 28.48ppm 
of CBF, and it reached 100% at 49.84ppm (Table 4). 
When the insect was exposed to 7.12ppm of bio-
fumigant the mortality was observed approximately 
50% at 60 MAT.

R. dominica was found higher susceptible than 
T. castaneum, to CBF, and 100% mortality of  

T. castaneum was observed at 49.84 ppm in 5 
MAT (Table 4) and it was 35.6ppm for R. dominica 
(Table 5). The LC50 values for T. castaneum and  
R. dominica were calculated as 35.96 and 22.59ppm 
respectively (Table 6). 
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Table 4: Mortality of Tribolium castaneum due to the exposure of cassava bio-fumigant

Time of	 Conc.	 Minute After Treatment (MAT)	
exposure 	(ppm)
(min) 		  5	 10	 20	 30	 40	 50	 60	 70	 80	 90

1	 0.18±0.0i	 -	 -	 -	 -	 -	 0	 0	 0 	 0	 0
2	 3.56±0.2hi	 -	 -	 -	 0	 0	 6d 	 19.3b  	 36c	 45b	 50h

							       -12	 -38.6	 -72	 -90	 -100
3	 7.12±0.9h	 -	 -	 -	 1.3d  	 3d  	 12c 	 22.7b	 41b 	 47b	 50g   
					     -2.6	 -6	 -24	 -45.3	 -82	 -94	 -100
4	 14.24±3g	 -	 -	 0	 2.7d 	 15.3c 	 32.3b	 48.7a	 50a  	 50a  	 50f

					     -5.3	 -30.6	 -64.6	 -97.3	 -100	 -100	 -100
5	 21.36±4.9f	 0	 0	 0.3c	 13c   	 43b  	 49.3a	 50a  	 50a  	 50a  	 50e

				    -0.66	 -26	 -86	 -98.6	 -100	 -100	 -100	 -100
6	 28.48±4.1e	 5d	 9.7d  	 14b  	 41.7b   	 50a  	 50a  	 50a  	 50a  	 50a  	 50d

		  -10	 -19.3	 -28	 -83.3	 -100	 -100	 -100	 -100	 -100	 -100
7	 35.6±4.3d	 36.7c  	 41.3c 	 47.3a 	 50a  	 50a  	 50a  	 50a  	 50a  	 50a  	 50c

		  -73.3	 -82.6	 -94.6	 -100	 -100	 -100	 -100	 -100	 -100	 -100
8	 42.72±1.6c	 43.3b	 47b	 50a  	 50a  	 50a  	 50a  	 50a  	 50a  	 50a  	 50b  
		  -86.6	 -94	 -100	 -100	 -100	 -100	 -100	 -100	 -100	 -100
9	 49.84±4.4b	 50a  	 50a  	 50a  	 50a  	 50a  	 50a  	 50a  	 50a  	 50a  	 50a  
		  -100	 -100	 -100	 -100	 -100	 -100	 -100	 -100	 -100	 -100
p-Value	 <.0001	 <.0001	 <.0001	 <.0001	<.0001	 <.0001	 <.0001	 <.0001	 <.0001	 <.0001	<.0001
CV (%)	 12.29	 15.7	 7.7	 11.3	 8.7	 6.4	 7.1	 5	 3.9	 3.4	
SE(d)	 2.609	 2.372	 1.249	 1.956	 1.843	 1.626	 2.03	 1.616	 1.377	 1.256	 0
LSD	 5.4819	 4.984	 2.6245	 4.109	 3.8725	 3.417	 4.2649	 3.396	 2.8931	 2.639	 0

X̅±SD, Duncan’s multiple range tests. Letters of the same alphabet in the same column are statistically not 
significant. Replication 03, n=50. Parenthesis shows percentage of mortality.

Table 5: Mortality of Rhizhopertha dominica due to the exposure of cassava bio-fumigant 

Time of	 Conc.	 Minute After Treatment (MAT)	
exposure 	(ppm)
(min) 		  5	 10	 20	 30	 40	 50	 60	 70	 80	 90

1	 0.18±0.0i	 -	 -	 -	 -	 0	 0	 0	 0	 0	 0
2	 3.56±0.2hi	 -	 -	 0	 0	 5.3d 	 23.6c	 36.3c 	 41.67b	 45.67b	 50f

						      -10.6	 -47.3	 -72.6	 -83.3	 -91.3	 -100
3	 7.12±0.9h	 0	 0	 8.3d	 16c	 29c	 39b	 45.33b	 50a   	 50a   	 50e   
				    -16.6	 -32	 -58	 -78	 -90.6	 -100	 -100	 -100
4	 14.24±3g	 1d	 3.6d	 22.3c	 37.6b	 45.3b	 50a	 50a	 50a	 50a	 50d

		  -0.6	 -7.3	 -44.6	 -75.3	 -90.6	 -100	 -100	 -100	 -100	 -100
5	 21.36±4.9f	 18.3c	 33.3c   	 40.6b	 50a   	 50a   	 50a   	 50a   	 50a   	 50a   	 50c

		  -36.6	 -66.6	 -81.3	 -100	 -100	 -100	 -100	 -100	 -100	 -100
6	 28.48±4.1e	 42b  	 44.6b 	 50a   	 50a   	 50a   	 50a   	 50a   	 50a   	 50a   	 50b 
		  -84	 -89.3	 -100	 -100	 -100	 -100	 -100	 -100	 -100	 -100
7	 35.6±4.3d	 50a   	 50a   	 50a   	 50a   	 5  0a   	 50a   	 50a   	 50a   	 50a   	 50a  
		  -100	 -100	 -100	 -100	 -100	 -100	 -100	 -100	 -100	 -100
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p-Value	 <.0001	 <.0001	 <.0001	 <.0001	<.0001	 <.0001	 <.0001	 <.0001	 <.0001	 <.0001	<.0001
CV (%)	 12.29	 10.6	 7.4	 10.6	 5.3	 6.5	 10.1	 6	 4.5	 3.3	 0
SE(d)	 2.609	 1.749	 1.387	 2.409	 1.382	 1.861	 3.23	 2.059	 1.567	 1.167	 0
LSD	 5.4819	 3.752	 2.9755	 5.168	 2.9632	 3.992	 6.9275	 4.415	 3.3615	 2.502	 0
at 5%

X̅±SD, Duncan’s multiple range tests. Letters of the same alphabet in the same column are statistically not 
significant. Replication 03, n=50. Parenthesis shows percentage of mortality.

Table 6: Lethal concentration of cassava bio-fumigant 
on Tribolium castaneum and Rhizhopertha dominica

Insects	 Lethal concentration (ppm)

	 LC 50	 LC 90	 LC 99

Tribolium castaneum 	 35.96	 41.92	 47.54
Rhizhopertha dominica	 22.59	 29.50	 35.80

The high volatility and efficiency in penetrating stored 
product bulks, along with the immediate knockdown 
effect on targeted pests, are crucial criteria for 
selecting fumigants to manage stored product pests. 
However, the adverse effects of synthetic fumigants 
on human health and the environment have 
driven a global search for alternative strategies.12 
Phytochemicals, particularly those from the families 
Apiaceae, Lamiaceae, Lauraceae, Euphorbiaceae, 
and Myrtaceae, have shown efficacy against stored 
product pests.25,26,27,28,29,30 Although over 3000 higher 
plant species are cyanogenic, only about 300 
species are known sources of hydrogen cyanide 
(HCN).31 The FAO (1984, 1989) has endorsed 
cyanogen as an effective fumigant for confined 
fumigation. Park & Coats in 2002 followed by 
Hooper in 2003 have demonstrated the effectiveness  
of synthetic cyanogen and hydrogen cyanide against 
various stored product pests, suggesting HCN as 
an immediate alternative to synthetic fumigants.19,32

The synthesis and accumulation of primary 
and secondary metabolites vary among plant 
species based on physiological and environmental 
factors. This variation affects the extractability  
of cyanogen within the nine cassava varieties 
studied. Previous research by Poulton (1990), 
Cardoso (2005) and Mushumbusi (2018) had 
reported significant differences in cyanogen levels 
among cassava varieties.31,33,34 Nambisan (1994) 
found cyanogen concentrations in Indian cassava 

varieties up to 1100 ppm.35 Cuvaca (2015) suggested 
that these variations are more a function of plant 
physiology than growing conditions.36 Ojiambo 
(2017) attributed differences in cyanide levels to 
variations in cellular structures affecting the diffusion 
of cyanogenic glycosides.17 Tender twigs and leaves 
were chosen for bio-fumigant production due to their 
higher cyanogen content.37

Our findings show that mechanical isolation yielded 
higher cyanogen extractability than direct leaf 
crushing. The grinding process accelerates the 
breakdown of cyanogenic glycosides by facilitating 
contact between glycosides and the enzyme 
linamarase, catalysing hydrolysis.33 Agitation in 
water solubilizes cyanogenic glycosides, and 
subsequent heating releases hydrogen cyanide.17,38 
Cyanogen release commenced at 55°C, with optimal 
linamarase activity reported at this temperature.35 
Pereira (2016)39 found that 99.95% of cyanogen was 
liberated at 75°C when cassava leaves were treated 
with buffer and linamarase. Our study observed 
cyanogen recovery in the collection tank between 
80 and 100°C.

Resistance to phosphine among T. castaneum and 
R. dominica has been well documented.7,40,41,42  Our 
findings corroborate with Park (2004), who reported 
greater susceptibility of R. dominica to cyanogen 
compared to T. castaneum.18 Aulicky (2014) and 
Stejskal (2016) demonstrated 100% mortality  



853GEORGE et al., Curr. Agri. Res., Vol. 12(2) 844-857 (2024)

of both pests in flour mills fumigated with HCN.43,44 
Continuous use of phosphine has led to resistance 
in several pest species, highlighting the need for 
alternative fumigants.6,7,40-47

Conclusion
Cassava leaves, often discarded as waste post-
harvest, represent an underutilized resource with  
significant potential in sustainable pest manage-
ment.48,49-55 This study highlights that the bio-
fumigant isolated from cassava leaves is an effective 
alternative to synthetic fumigants for controlling 
stored product pests. With the increasing need for 
safe pest management measures, especially post-
harvest, the utilization of natural bio-fumigants offers 
a promising solution. Cassava, primarily cultivated 
for its tubers, can now provide an additional income 
stream for farmers through the adoption of bio-
fumigant extraction technology. This approach not 
only mitigates the environmental and health hazards 
associated with synthetic fumigants but also makes 
use of an agricultural by-product that would otherwise 
go to waste. The rich cyanogenic content in cassava 
leaves, when efficiently extracted, can serve as a 
potent fumigant, ensuring the protection of stored 
products without the adverse effects of chemical 
alternatives. By integrating this bio-fumigant 
extraction into existing cassava farming practices, 
farmers can enhance their economic stability while 
contributing to sustainable agriculture. Our study 
highlights the effectiveness of cyanogen as a bio-
fumigant, with mechanical isolation yielding higher 
cyanogen extractability than direct leaf crushing. 
The grinding process facilitated the breakdown 
of cyanogenic glycosides, with optimal release 
occurring between 80 and 100°C. Our findings  
corroborate previous studies, demonstrating that 
R. dominica is more susceptible to cyanogen than  
T. castaneum, achieving 100% mortality in fumigated 
environments. This supports the use of cyanogen 
as an alternative to phosphine, particularly in light 
of the growing resistance of stored product pests 
to synthetic fumigants. This study underscores 

the dual benefits of this technology: effective pest 
management and additional revenue for farmers, 
paving the way for a safer and more sustainable 
post-harvest storage system.
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