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Abstract
Soil salinity is a major abiotic stressor that hampers agricultural productivity 
worldwide, with both natural and anthropogenic factors contributing to its 
rise. Salinity disrupts osmotic and ionic balance, impairs seed germination, 
hinders photosynthesis, and exacerbates oxidative stress, leading  
to significant membrane damage. In response, plants have evolved various 
biochemical and physiological and molecular mechanisms to tolerate high 
salinity. Recent research has greatly advanced our understanding of salt 
tolerance by identifying key genes associated with this trait. These studies 
have highlighted essential genes involved in ion transport, stress signaling, 
and maintaining osmotic balance. By integrating genetic insights with 
practical approaches like breeding and genetic engineering, researchers are 
developing crops better suited to saline environments, which is crucial for 
addressing global food security challenges. This paper aims to review recent 
findings on the impact of salt stress on plants and explore the physiological, 
biochemical, and molecular mechanisms underlying salt tolerance.
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Introduction
Throughout their life cycle, plants and agricultural 
productivity are constantly subjected to various 
environmental challenges, which are key areas  
of scientific study. A variety of anthropogenic 
activities further intensifies these challenges.1,2  
To cope with environmental constraints, plants 
adopt various defence strategies. Plants are 
subjected to two types of stress: abiotic and 
biotic. Examples of abiotic stress include extreme 
temperatures (both high and low), strong winds, 
water surpluses and deficits, air pollution, UV rays, 
salinity, heavy metal deposits, mechanical damage, 
and chemical stressors.1,2 Biotic stressors include 
weeds, predators, oomycetes, nematodes, and 
herbivores.1,2

One of the main abiotic factors that lower agricultural 
output is salt stress, which affects seed germination, 
early seedling growth, and both vegetative and 
reproductive growth. One of the main factors limiting 
the amount of agricultural output available to feed 
a growing population is salt stress.1,2 Due to human 
activity, salt stress is already present on between 
20 and 50 percent of cultivable land worldwide,1,2 
Furthermore, because of inadequate irrigation, 
excessive surface evaporation, weathering of local 
rocks, little rainfall, and bad agricultural methods, 
saline land is growing by roughly 10% a year.3 
32 million hectares of agricultural land and over 
800 million hectares of other land are salinized 
worldwide.4 However, one of the biggest obstacles 
to global agriculture will be the need for 70% more 
food to feed the world's population when it grows to 
2.3 billion by 2050.5 Stresses other than salt stress 
account for over half of yield losses.6 Nearly 90% 
of plant-based food comes from thirty mostly salt-
sensitive crops. According to published research, 
a substantial yield loss happens at intermediate 
salinity levels, about 40–80 mM NaCl.7

Ions in saline soil impose osmotic stress that 
later results in ionic stress.8,9 Salinity in the soil 
has an impact on seed germination, early plant 
seedling growth stages, and total crop output and 
production limitations.8,10,11 Photosynthesis is an 
essential cellular metabolic process needed to 
produce food for plant survival.12 Salinity affects 
the photosynthesis process leading to cell and 
even plant death.13,14 Plants experience oxidative 
stress as a result of soil salinity, which creates 

reactive oxygen species (ROS) that damage cell 
biomolecules.15 These ROS can cause membrane 
damage by lipid peroxidation.16 Salt stress tolerance 
is the capacity to endure high salinity environments. 
The osmotic and ionic balances both within and 
outside of cells are mostly upset by salinity. 
Therefore, by carefully regulating their ion intake 
and compartmentalization, plants preserve ion 
homeostasis.17 To maintain osmotic balance, plants 
produce several osmolytes.18 Plants have evolved 
an antioxidant defence system of enzymatic and 
non-enzymatic antioxidant molecules in response 
to the overproduction of ROS.19,20

Salt stress represents a major challenge for 
agriculture worldwide, prompting significant research 
into plant mechanisms for coping with salinity. 
Recent studies have provided valuable insights into 
the genetic and molecular bases of salt tolerance.21 
Various genes which are expressed under salinity 
were found by Kim and Kim (2023) in rice,22 by 
Liu (2022) in mungbean,23 by Irshad (2022) in 
wheat24 and by Qi X. (2014) in soybean.25 It was 
suggested that identified genes were involved in 
Osmolyte productions, antioxidant defence system, 
secondary metabolite synthesis.24 Together, these 
studies underscore the progress in identifying 
genetic targets and devising strategies to enhance 
salt tolerance. By merging genetic discoveries with 
practical applications, such as gene engineering 
and breeding, researchers are advancing towards 
developing crops that can better withstand saline 
conditions. Ongoing research and technological 
innovations are crucial for translating these findings 
into effective solutions that enhance agricultural 
productivity under salt stress.

Types and Causes of Salinity
Natural or Primary Salinity
Geological, hydrological, and pedological processes 
accumulate salts responsible for natural, i.e., primary 
salinity. Natural saltiness is the result of two main 
natural processes. First, there is the weathering of 
parent rocks such as igneous rocks (such basalt and 
phenolates), which contain soluble salts of different 
kinds (mostly Na, Ca2+, and Mg2+ chlorides, and to 
a lesser degree, SO4− and HCO3−).26 The second 
is the oceanic or cyclic salts that are deposited by 
rainfall after being transported by the wind and 
landing on land, such as sodium chloride.27
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Human-Induced or Secondary Salinity
Secondary or human-induced salinity is the result  
of human activity and includes things like overgrazing, 
incorrect irrigation techniques, deforestation, 
wastewater emissions from cities or industry 
that include salt, and chemical fertilisers used in 
agriculture. Salt accumulation occurs in the soil 
when soluble salts from surface and groundwater 
are continuously used to irrigate agricultural area 
with inadequate drainage systems.28  It brings salts 
above ground through the upward movement of 
water. Eventually, when surface water evaporates, 
it leaves behind salt, which increases soil salinity. 
Replacement of native vegetation with crops like  
cereals with shallow roots results in less evapo-
transpiration, and more leaching causes rising of 
groundwater level.

Effects of Salt Stress on Plants
Salinity generally results in an imbalance of water 
and ions, disruption of the cell membrane, restriction 
of the detoxification process of reactive oxygen 
species (ROS), reduction of antioxidant enzyme 
activity, and reduction of photosynthetic activity.29 
Production of reactive oxygen species (ROS) in 
response to salinity causes oxidative stress, which 
breaks down essential plant cell activities and 
deteriorates macromolecules like lipids, proteins, 
and DNA.30 The synthesis of photosynthetic 
pigments and photosynthesis, germination, growth, 
protein synthesis, nucleic acid synthesis, lipid 
metabolism, and secondary metabolite production 
are all impacted by salt stress, which also induces 
oxidative and osmotic stress.

Osmotic Stress and Ionic Imbalance
Poor plant growth and development are the result of 
excessive salt's first osmotic or water-deficit effect, 
which is followed by ionic stress or ion toxicity.31 
High salt accumulation in the soil and plant tissues 
during the first stage of salinity, also known as 
hyperosmotic stress, results in osmotic stress, 
reduces the ability of the root system to absorb 
water, and increases leaf water loss.32 Ionic stress 
is caused in the latter phase by the build-up of salt 
ions like Na+ and Cl−. Growth and development are 
impeded by high concentrations of Na+ because 
they prevent the absorption of K+ ions, one of the 
required components. An overabundance of Na+ 

and Cl- ions causes an ion imbalance, which may 
result in physiological problems.

Germination
One of the crucial stages in a plant's life cycle that  
ultimately determines production is seed germination. 
Nonetheless, salt stress poses a serious threat 
to this stage.25 The main stressor that causes 
germination to be delayed and the percentage  
of seeds that germinate to be reduced is salinity.33 
Excessive levels of salt in the soil lower the osmotic 
potential of the soil water, which in turn lowers 
the amount of water that dry seeds can absorb. 
Additionally, ionic stress and ion toxicity are brought 
on by the intake of excessive Na+ and Cl-ions, which 
impair vital metabolic functions like respiration, 
energy synthesis, and the metabolism of proteins 
and nucleic acids.34 Salinity reduces reserved food, 
protein synthesis, and water potential in many 
plant seeds that germinate, including broccoli and 
cauliflower.35

Under typical environmental circumstances, the 
germination process of seeds proceeds through 
three stages. Stage I is the imbibition stage, during 
which dry seeds quickly absorb water. Stage II is the 
plateau stage, during which time cellular metabolic 
systems are reactivated and water uptake is 
inhibited. Water is constantly absorbed during stage 
III, the post-germination stage, until germination is 
fully completed (Figure 1). Under salinity, osmotic 
stress in stage I, ionic stress in stage II, and a 
combination of osmotic and ionic stress in stage 
III are responsible for inhibiting or delaying seed 
germination.36

During the seed germination period, salinity induces 
an imbalance in hormones, particularly in abscisic 
acid and gibberellin, which delays and occasionally 
even inhibits seed germination. Reactive oxygen 
species (ROS) are produced more readily in salinity. 
Simultaneously, decreased ROS scavenging causes 
the cells' vital macromolecules—proteins, nucleic 
acids, lipids, and carbohydrates—to be damaged, 
which inhibits the process of seed germination.37 
Salinity has negatively affected the germination 
in soybean,38 Medicago sativa,33 and Hordeum 
vulgare34
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Plant Growth
Ion toxicity and osmotic pressure both have an impact 
on plant growth under salinity. Plant development 
is inhibited by salt because of increased osmotic 
potential and matrix in the soil, which reduces 
water intake.39 Plant growth and development are 
impacted by high salinity, which causes the plant 
to become stunted.11 The life and growth of the 
plant depend heavily on the seedling stage, the first 
stage of plant establishment. On the other hand, 
salinity has a significant impact on the seedling 
stage, which results in reduced plant growth.40  
An immediate effect of high salinity is the reduction in 
leaf expansion11,40 As salt concentration rises, salinity 
also affects and decreases leaf area, plant height, 
shoot length, root length, fresh weight, dry weight, 
and tissue water content.38,41 Sahin (2018)39 have 
also observed that vegetative growth parameters 
such as plant height, plant biomass, stem diameter, 
leaf area are significantly reduced under salinity  
at all salt treatments compared to control in Brassica 
oleracea. Furthermore, they discovered a strong 
negative linear association (almost 90%) between 
the parameters of vegetative growth and salinity. 
Under salinity, there were also fewer secondary 
roots.38

Crop yield 
Abiotic stresses reduce crop yield and production.9 
Due to poor water irrigation techniques and 
insufficient drainage of irrigated agricultural fields, 
which cause salt build-up in the soil and decrease 
water and nutrient intake, salinity restricts the 
growth of crop plants, mostly in arid and semi-arid 
regions.42 About 30 crop species such as rice, 

sorghum, barley, maize, wheat, sugarcane, potato, 
sugar beet, soybean, sweet potato, cotton, and 
mungbean provide 90% of plant-based human 
food. At moderate salinity conditions (EC 4-8 dS/m),  
50-80% yield loss was observed in these crops.43  
If salinity increases in the initial phase of the plant’s 
life cycle, the plant growth, development, yield, and 
production are significantly reduced, and the quality 
and quantity of the produce are compromised.42 
Maas and Hoffman (1977) 44 have published a 
model that suggests that relative crop yield is never 
reduced until a certain threshold level of salinity is 
exceeded. Loss in crop yield due to salinity has 
an economic impact on agriculture and bio-based 
industries. According to reports, irrigated agricultural 
lands lose more than 27 billion US dollars annually 
due to salt in the soil.45 Various studies have reported 
differences in yield loss at different salinity levels. 
Corn, wheat, and cotton showed yield losses of 55%,  
28%, and 15% at salinities of 8 to 10 dS/m, 
respectively. In cotton, the 18 ds/m salinity results in 
a 55% yield reduction.46 Growing salt in mungbean 
caused a decrease in the pod parameters (number 
of pods/plant, average pod length, fresh and dry 
weight of pod/plant) and seed parameters (number 
of seeds/plant, weight of 100 seeds, and seed yield/
plant).47 Less green leaves, poor leaf expansion, 
a smaller number of leaves, and leaf senescence 
result in less photosynthetic activity, maybe the 
reason behind the reduction in yield under salinity. 
Some research has shown that as salt content 
increased, wheat production, spike length, spikelet 
count, and spike/1000 grain weight decreased.48 
They concluded that yield reduced immediately 
under salinity due to osmotic and ionic stress.
 

Fig. 1: Effect of salinity on seed germination
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Photosynthesis and Photosynthetic Pigments
Plants produce their food by one of the important 
metabolic processes, photosynthesis, which 
helps accumulate dry matter and productivity. Salt 
stress disrupts and limits photosynthesis either by 
stomatal closure, leading to reduced intercellular 
CO2 concentration or non-stomatal limitations.13 
Short-term salt effects on photosynthesis are visible 
within a few hours to one or two days, stopping 
carbon assimilation in plants. Long term effect of 
salt on photosynthesis occurs after a few days.11 
Salt stress affects the ultrastructure of a chloroplast. 
Disruption of thylakoid structure, increment in size 
and number of pellets of the plastid and decreased 
amount of starch, aggregation of chloroplast without 
stroma and grana in leaves was evident under 
salt stress.49 Numerous factors contribute to the 
reduction of photosynthetic activity under salinity, 
including changes in enzyme activities, osmotic 
stress resulting in a decrease in the osmotic potential 
of water in the soil, disruption of the photosynthetic 
electron transport system, and dehydration  
of membranes reducing CO2 permeability. Also, the 
ion toxicity of salts reduces the uptake of essential 
nutrients, limiting photosynthesis and generating 
reactive oxygen species (ROS).50 Salinity affects 
receptors of photosystem II (PSII) of light-dependent 
reaction, which reduces the density of active 
reactions centres.51

Plant pigments harvest sunlight and offer photo-
synthetic protection in the light reaction of photo-
synthesis. Leaf photosynthetic pigments are vital 
for photosynthesis and gross primary production. 
The chlorophyll content represents the plant's 
photosynthetic capacity.52,53 Carotenoids composed 
of carotenes and xanthophylls are other major 
photosynthetic pigments. Carotenoids are an 
essential structural component of a photosynthetic 
antenna that harvest light energy.54,55 Carotenoids 
not only aid in photosynthesis but also function as 
antioxidants and have been shown to scavenge 
reactive oxygen species.55 Carotenoids also protect 
reaction centres by dissipating excess light energy 
absorbed during photosynthesis.56 The chlorophyll 
a, chlorophyll b, total chlorophyll, and carotenoids 
were reduced under salinity in salt-sensitive lines 
of Medicago truncatula. Over accumulation of Na+ 
ions in leaf tissue causes changes in chlorophyll 
pigments and limits their synthesis, leading to leaf 

chlorosis.57 Decreased chlorophyll and carotenoid 
contents under salinity were observed in cotton58 
and soybean.59 In plants under stress from salt, the 
breakdown of chlorophyll pigments is caused by the 
enzyme chlorophyllase.59

Oxidative Stress
Reactive oxygen species (ROS) are continuously 
produced by plants during respiration and photo-
synthesis, and these can harm cells oxidatively.60 
Therefore, in order to shield plant cells from oxidative 
damage, plants need to scavenge these ROS. 
Enzymatic and non-enzymatic antioxidants are 
involved in two different ROS scavenging systems in 
plants.61 The generation of ROS and its scavenging 
in plant cells are in equilibrium in the natural world. 
Oxidative stress, however, results from many 
environmental pressures upsetting this balance.62

ROS are oxygen radicals or their derivatives such 
as hydroxyl radical (•OH), superoxide (O2•), singlet 
oxygen (1O2) and hydrogen peroxide (H2O2), ozone 
(O3), hypoiodous acid (HOI), hypochlorous acid 
(HOCl), hypobromous acid (HOBr), perhydroxy 
radical (HO2•), peroxyl (RO2•), peroxy radical 
(ROO•), semiquinone (SQ•-), and carbonate (CO3•-).  
ROS damages the cell membrane and cell organelles 
in several cell organelles, including the chloroplast, 
mitochondria, endoplasmic reticulum, peroxisomes, 
plasma membrane, and cell wall, when exposed to 
harsh environmental conditions like salt. Excess 
ROS are produced as a result of osmotic and ionic 
stress, nutritional imbalance, and other related 
downstream consequences caused by salt stress. 
ROS produced by salinity are hazardous and can 
harm proteins, lipids, and nucleic acids. These 
ROS cause these biomolecules' roles to shift, 
which in turn causes physiological and biochemical 
changes in cells that ultimately result in oxidative 
stress.63 However, plants' antioxidant defensive 
system, which consists of both enzymatic and non-
enzymatic components, helps them scavenge or 
detoxify excess ROS, thereby reducing oxidative 
stress.64 Antioxidant enzymes including catalase, 
peroxidase, superoxide dismutase, and ascorbate 
(ASC)–glutathione (GSH) cycle enzymes make 
up the enzymatic antioxidant system. (ascorbate 
peroxidases, dehydroascorbate reductase, 
monodehydroascorbate reductase, glutathione 
reductase, glutathione-s-transferases, glutathione 
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peroxidases),61,65 Scavenging or mitigating ROS 
created during oxidative stress are non-enzymatic 
antioxidants such as glutathione, ascorbate, vitamin E,  
carotenoids, flavonoids, phenolics, and non-protein 
amino acids like proline.63,66,67

Membrane Damage
Plant membranes are an important protective 
biological barrier of plant cells, protecting the internal 
contents of cells and organelles from abiotic and 
biotic stresses. These membranes are made up 
of lipids and proteins and play an important role in 
transporting substances, transmitting energy, and 
transducing signals. Further, selective permeability 
of cell membranes for ions helps regulate ion 
homeostasis inside a cell. Changes in the structure 
and functions of membrane lipids are observed under 
salinity in halophytes and glycophytes alike. Salinity-
induced overproduction of ROS causes oxidative 
stress through increasing relative permeability and 
decreasing fluidity of membranes. It also affects 
selectivity, flow rate, and transportation of ions, 
alters properties of membrane proteins, signalling 
molecules, and signal transduction. Moreover, it also 
causes osmotic stress due to exosmosis of many 
electrolytes.16,68

One of the main results of lipid peroxidation, 
malondialdehyde (MDA), has the ability to modify 
and deactivate the proteins and enzymes that are 
found on the plasma membrane, changing the 
structure and functionality of the membrane. MDA 
content is also the primary indicator of plasma 
membrane damage under salinity. Momeni (2021) 
have reported significantly increased MDA content 
in salt-sensitive durum wheat genotype compared 
to salt-tolerant type.69 Lipid peroxidation found in 
cellular and organellar membranes increases when 
ROS are overproduced in plant cells, affecting the 
cell's function. Lipid peroxidation causes damage to 
DNA and proteins.70 ROS accumulation, membrane 
damage, and imbalanced ion homeostasis hamper 
the rate of protein synthesis, It causes toxic 
substances and amino acid buildup inside the 
cell. Toxic polyamines like glutamine and butane 
diamine are produced from amino acids including 
arginine, isoleucine, and ornithine. Plant growth and 
development are severely harmed by the buildup  
of these poisonous chemicals.71

Fig. 2: Impact of salt stress on the plants

Salinity Tolerance in Plants
Plants have a complex procedure for adjusting to salt 
that incorporates numerous processes. The capacity 
of a plant to complete its life cycle with enough 
growth and output is known as salinity tolerance.72 
Three main ways that soil salinity impacts plant 
growth and development are through osmotic stress, 
ion toxicity, and nutrient uptake and translocation.40 
Plants are divided into two categories: halophytes 

(very salt-tolerant) and glycophytes (salt-sensitive). 
Halophytic plants regulate the ion levels in their 
shoots and leaves and limit ion uptake through 
their roots as one of several adaptations they 
make to withstand salinity.72 By altering their 
morphological, anatomical, physiological, and 
biochemical processes, halophytes also prevent 
salt stress.73
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Generally, plants have systems to withstand saline 
in the soil. First, plants have a mechanism called salt 
avoidance that keeps salt away from tissues or cells 
that are metabolically active.9 It includes ion dilution, 
active ion exclusion using ion pumps, and passive 
ion exclusion using a permeable membrane.40 
Secondly, through ion compartmentalization in 
vacuoles of plant cells.74 Therefore, the mechanism 
of salt tolerance may include a) controlled ion uptake, 
b) tissue level tolerance, c) compartmentalization of 
ions in a vacuole, d) discrimination of ions, and e) 
synthesis of osmolytes, hormones, and antioxidant 
enzymes.9

Ion Homeostasis and Compartmentalization
Ion homeostasis is one of the most crucial defence 
systems for a plant's regular growth in salty 
environments because salinity stress throws off the  
usual ion balance inside a cell. Numerous plants 
have evolved effective systems to preserve ion 
homeostasis in the cytoplasm of their cells by 
controlling ion intake and compartmentalization 
to maintain low cytoplasmic ion concentrations. 
Halophytic and glycophytic plants cannot withstand 
or tolerate higher salt concentrations in the soil. 
Hence, they transport excessively accumulated ions 
to vacuoles or compartmentalize the ions in different 
tissues that are ultimately sacrificed to protect the 
plant from damage due to salinity.75,76 Certain ions, 
such as calcium, potassium, and nitrogen, are 
necessary for the plant's growth and development. 
These ions are found in soil, but they compete with 
other ions at higher concentrations to enter plant 
cells. Salt ions cause an imbalance in the absorption 
of ions necessary for plant development. Ion transit 
and low concentration are essential functions of cell 
membranes.

Ions are transported inside plants through the 
membrane proteins such as ion channel proteins, 
symporter, and antiporters present on the cell 
membrane.77 NaCl is the main salt present in saline 
soil; hence the study of exclusion of Na+ from 
roots, long-distance Na+ transport mechanism, and 
compartmentalization of Na+ ion is a crucial area  
of research to understand ion homeostasis at tissue 
and cell level. Na+ toxicity in a cell is controlled 
through Na+/H+ antiporters present on the vacuolar 
membrane. These antiporters help sequestration  
of excess Na+ in the vacuole under salinity. Vacuolar 
Na+ sequestration prevents the increase of Na+ and 

maintains the Na+/K+ ratio in the cytosol.78 Vacuolar 
membranes contain two primary antiporters: 
vacuolar pyrophosphate (V-PPase) and vacuolar-
type H+-ATPase (also known as V-ATPase).76 For 
Na+ sequestration in vacuoles, the most well-known 
transporters are NHX1 Na+, K+/H+ exchanger, and 
Na+.79,80

Under salinity, the salt-overly-sensitive (SOS) 
signalling system preserves ion homeostasis.  
It comprises plasma membrane SOS3, SOS2, and  
SOS1-like Na+/ H+ exchangers. These SOS 
exchangers extrude Na+ from the root cells to  
maintain ion homeostasis and increase salt 
tolerance.81 Under typical circumstances, the 
cytoplasm of the cell maintains a K+ concentration 
of up to 100 mM. Maintaining this cytosolic K+ 
concentration for plant growth and development is 
crucial. However, this K+ homeostasis is disturbed 
under salinity, altering critical physiological processes 
dependent on K+ concentration.82 Under salinity, Na+ 
concentration is increased in soil; hence, because  
of similar charges, Na+ competes with K+ for the same  
transporter, which ultimately reduces K+ uptake.9 It is  
well known that Ca2+ also helps during salinity 
stress which reduces the toxic effect of NaCl stress 
by facilitating higher K+/Na+ selectivity.83 Cytosolic 
Ca2+ increases under salt stress and is transported 
from the apoplast and intracellular compartments. 
As a result, there is less salt stress on plant growth 
and development since the subsequent rise in Ca2+ 
starts signal transduction.84

Osmo-Protection
Stressful environmental circumstances cause plants 
to build large amounts of cellular osmoprotectant, 
which is crucial to their defence mechanisms. These 
osmolytes are tiny, electrically neutral, organic, low 
molecular weight, and extremely water-soluble 
substances. Moreover, osmoprotectant are nontoxic 
to plants at high concentrations under unfavourable 
environmental conditions due to their involvement 
in intracellular metabolisms operating under stress 
conditions.85 Three main types of osmolytes are 
recognized: a) amino acids (proline, gamma-
aminobutyric acid (GABA), hydroxyproline, pipecolic 
acid, and polyamines), b) betaines and associated 
molecules (glycine betaine, proline betaine, and 
alanine betaine), and c) sugars (sucrose, trehalose, 
sorbitol, fructan, and raffinose) and polyols (mannitol 
and inositol).85,86
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These osmolytes accumulate during stress conditions 
for the cell's survival and maintain the osmotic  
balance between cell cytoplasm and surroundings.61 In 
addition to osmotic osmoregulation, osmoprotectant  
also help to maintain cellular turgor pressure, scavenge  
reactive oxygen species, stabilise enzymes or proteins,  
preserve membrane integrity, replenish inorganic 
ions, reduce ion toxicity, and safeguard cellular 
components.86,87 Moreover, osmoprotectant regulate 
protein folding, photosynthetic upregulation, and 
activation of defence-related genes under various 
stress conditions.87,88

Proline
One of the important osmolytes that accumulates 
in the cytoplasm under salinity is proline. It is highly 
capable of hydrating. Its hydrophobic ends attach to 
proteins, whereas its hydrophilic end can attach to a 
water molecule. Because proteins bound to proline 
may bind more water molecules, they help fend off 
dehydration and stress-induced protein breakdown. 
When there is stress, proline synthesis rises and 
its breakdown falls.89 It functions as a signalling 
molecule that helps keep proteins, enzymes, and 
membranes stable. Proline upregulates membrane 
proteins to maintain membrane integrity, scavenges 
reactive oxygen species, and maintains the balance 
of ion homeostasis under salinity. Many studies 
have shown that proline increases water uptake, 
enhances the activity of antioxidant machinery, 
and reduces the accumulation of toxic ions under 
salinity. Proline also acts as a molecular chaperon 
that can maintain protein folding and confirmation.  
It can also buffer cytosolic pH and balance the 
redox condition.31,90 Proline can mitigate the effect  
of stress in two ways: a) by accumulating an excess  
of proline under stress by upregulating its biosy-
nthesis, which can serve as an osmolyte, chaperone, 
and as a direct scavenger of ROS, and b) by activating  
metabolic flux of proline which is linked to other 
mechanisms in plants. This proline metabolic flux 
helps maintain cellular energy, NADP+/NADPH 
balance, and activate signal transduction that 
promotes cell survival.89

Glycine Betaine
A quaternary ammonium molecule called glycine 
betaine helps mammals, fungus, algae, bacteria, 
cyanobacteria, and members of the Poaceae and 
Chenopodiaceae families lessen the harmful effects 

of various abiotic stressors. Most importantly, 
as an osmolyte under salinity, it protects higher 
plants from stress damage.91 Glycine betaine has 
a unique structure that can bind with hydrophilic 
and hydrophobic ends of enzymes and proteins 
present in plants. Thus, it prevents enzymes and 
proteins from denaturation and retains membrane 
integrity, osmotic balance, and scavenges ROS 
under stress conditions.86,92 Glycine betaine, which is 
produced in the chloroplast of flowering plants, aids 
in the defence of proteins, enzymes, and thylakoid 
membranes in the photosynthetic machinery 
during stressful situations.92 Syeed (2021).93 have 
reported that glycine betaine protected membrane 
damage and increased antioxidant defence 
system that enhanced the photosynthetic activity 
and plant growth. Glycine betaine regulates the 
osmotic balance in stressed plants and helps ion 
transporters for normal functioning. Hence, glycine 
betaine is considered a protective compound that 
discriminates Na+ against K+ under salinity. Glycine 
betaine is thought to increase the vacuolar efficiency 
of root cells to accumulate and store more Na+ ions 
under salinity. They have also reported increased 
antioxidant (enzymatic and non-enzymatic) activity 
after exogenous application of glycine betaine under 
salinity that helped in scavenging ROS.94

Amino Acids
In order to create stress tolerance in plants, free 
amino acids are a key solute for osmotic adjustment 
in high salinity environments.40 Amino acids including 
glycine, alanine, proline, isoleucine, leucine, valine, 
arginine, glutamine, asparagine, and non-protein 
amino acids like pipecolic acid, citrulline, ornithine, 
and gamma-aminobutyric acid accumulate in cells 
as a result of desiccation under stress.92 One of the 
main amino acids that rises in salinity is proline.95

 
Sugars and Sugar Alcohols
Plants undergo dehydration or desiccation under 
salinity due to osmotic stress. Sugar and sugar 
alcohols maintain the osmotic equilibrium of cells 
under dehydration. Plants synthesize and accumulate 
various monosaccharides, disaccharides, and other 
sugars such as glucose, fructose, sucrose, fructans, 
and starch to minimize salinity-induced osmotic 
stress.96 Sugar molecules replace their hydroxyl group 
with water molecules under dehydration and maintain 
a hydrophilic structure in their hydrated orientation. 
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Under severe desiccation, these sugars may 
substitute for water-bound macromolecules, thereby 
maintaining hydrogen bands. Thus, they prevent  
protein folding and membrane disturbance.97,98

Plants also synthesize sugar alcohols such as 
mannitol, sorbitol, and inositol under salinity stress to  
improve salt tolerance by osmotic adjustment. By 
promoting development, scavenging ROS, preserving  
cell turgor, and securing Na+ inside vacuoles, they 
lessen stress.99

Antioxidant Defence System
Plants produce an excess of ROS under salinity which 
can damage the cell. Hence, to scavenge ROS, plants 
have adapted an antioxidant defence mechanism. 
The two primary categories of antioxidants in this  
process are: 2) Non-enzymatic antioxidants such  
as carotenoids, alkaloids, flavonoids, glutathione, 
ascorbic acid, and α-tocopherol; and 1) enzymatic 
antioxidants such as catalase, ascorbate peroxidase,  
glutathione peroxidase, superoxide dismutase,  
monodehydroascorbate reductase, dehydro-
ascorbate reductase, and glutathione reductase.20

Enzymatic Antioxidants
Superoxide dismutase (SOD) is the most critical and 
effective omnipresent metal-containing enzymatic 
antioxidant in plants. Plant stress tolerance is 
increased as a result of it serving as the first line  
of defence against oxidative stress. Superoxide 
radical (O-2) is broken down by SOD into oxygen (O2) 
and hydrogen peroxide (H2O2).  SOD has three types 
of isozymes based on SOD-binding metal ions: a) 
Cu/Zn- SOD localized in chloroplast, cytoplasm, and 
peroxisomes, b) Fe-SOD localized in chloroplast, and 
c) Mn-SOD localized in mitochondria.100 Butt (2021)  
observed that when chilli plants were salinized, SOD 
activity increased.101

Catalase (CAT) was the first enzyme discovered 
to play a role in the antioxidant defence system. 
CAT functions as a scavenger of H2O2 produced 
in peroxisomes during photorespiration and the 
β oxidation of fatty acids.102 CAT specifically 
decomposes H2O2 into H2O and O2 with a very high  
turnover. In angiosperms, three CAT genes are 
studied which express isozymes- CAT1, CAT2, 
and CAT3. Peroxisomes and glyoxysomes are the 
primary locations for these isozymes. CAT activity 
was elevated under salinity in barley103 and chili.104

Peroxidase (POD) is a family of isozymes, heme-
containing monomeric glycoproteins, that oxidize 
various molecules by utilizing H2O2. H2O2 acts as an 
electron acceptor and is converted into 2H2O. POD 
is localized in the cell wall, cytoplasm, vacuoles, 
and organelles of the plant cells.104 Increased POD 
activity under salinity was reported in Dracocephalum 
moldavica64 and chili.101

Compared to SOD and CAT, ascorbate peroxidase 
(APX) has a greater affinity for H2O2. It is essential 
to the cycles of glutathione (GSH) and ascorbic 
acid (AsA). In an APX-catalysed reaction, ascorbic 
acid acts as a reducing agent, which reduces 
H2O2 to 2H2O. There are five isozymes of APX 
found in different organelles: cytosol, mitochondria, 
peroxisome thylakoid, and the stroma of plant 
cells.105,106 Kharui (2019) found that under salinity, the 
salt-tolerant "Umsila" date palm showed more APX 
activity than the salt-sensitive "Zabad" date palm.66

ROS scavenging is not a direct function of other 
antioxidant enzymes like glutathione reductase 
(GR), dehydroascorbate reductase (DHAR), and 
monodehydroascorbate reductase (MDHAR). They 
do, however, play a role in the AsA and GSH cycle's 
renewal. This AsA-GSH cycle ultimately detoxifies 
H2O2 and reduces oxidative damage.107 Glutathione 
peroxidase (GPX) protects the cell from oxidative 
stress by using glutathione thioperoxide with the help 
of glutathione S-transferase (GST).108,109

Non-Enzymatic Antioxidants
One of the main substrates for ROS detoxification in 
both stressful and non-stressful situations is ascorbic 
acid (AsA), also known as vitamin C. It is a low 
molecular weight, water-soluble antioxidant molecule. 
It is one of the most potent antioxidants due to its 
regenerative nature.110 AsA acts like a co-enzyme  
that donates electrons to scavenge ROS. It also  
regenerates vitamin E, which acts as an antioxidant.111 
The AsA- GSH pair regulates many developmental 
processes in plants by manipulating oxidative 
metabolism.110 Noreen (2021) shown that barley's 
antioxidant defence system improved following 
ascorbic acid foliar fertigation in a salinity-sensitive 
environment.111

Glutathione, also known as γ-glutamyl-cysteinyl-
glycine, is a thiol molecule with a low molecular 
weight that is soluble in water. By directly or indirectly 
detoxifying ROS, it regulates intracellular defence in 
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a crucial way.112 Additionally, it is important for the 
AsA-GSH cycle, which detoxifies ROS.107 Kharusi 
(2019) reported enhanced glutathione accumulation 
under salinity in a salt-tolerant cultivar of date palm 
compared to a salt-sensitive one.66

Carotene (CAR) is a lipid-soluble antioxidant 
pigment present in chloroplast. It primarily acts as 
a light-harvesting accessory pigment and is also 
known to detoxify ROS in plants. Under stressed 
conditions, carotenoids react with triplet chlorophyll 
(3Chl*) or activated chlorophyll molecule (Chl*), thus 
preventing the formation of singlet oxygen and other 
ROS, thus protecting photosynthetic apparatus.113 
Ben-Abdallah (2019) reported increased carotenoid 
content in Solanum villosum at 100 mM sat stress.114 

Moreover, they found enhanced expressions of genes  
related to carotenoid production, such as phytoene 
synthase 1, phytoene synthase 2, and b-lycopene 
cyclase.

Alpha-tocopherol (Vitamin E) is also known to 
scavenge the ROS derived from photosynthesis, 
mainly singlet oxygen and hydroxyl radicle. 
It scavenges lipid peroxy radicals and prevents 
lipid peroxidation in the thylakoid membrane, thus 
protecting plants from oxidative damage under 
stress. Its level is regulated by plant sensitivity 
and severity of stress.115 Other non-enzymatic 
antioxidants such as flavonoid, mannitol, and proline 
also help to scavenge ROS in plants.67

Fig. 3: An overview of antioxidant defence and oxidative stress in relation to salt

Salt Tolerance Genes in Plants
Salinity is one of the most challenging abiotic 
factors affecting plant growth and productivity, 
especially in arid and semi-arid regions. The ability 
of plants to tolerate salt stress is a complex trait 
governed by a range of genes and mechanisms. 
Advances in molecular biology and genomics 
have significantly enhanced our understanding  
of the genetic foundations of salt tolerance in plants, 
paving the way for the development of salt-resistant 
crop varieties. This section highlights key findings 

from recent studies on plant genes responsible 
for salt tolerance, with a focus on the integration  
of transcriptomic, genomic, and functional 
approaches. Gaining insights into the genetic basis  
of salt tolerance is essential for the development 
of salt-resistant crops. Numerous studies have 
investigated the molecular mechanisms and 
genes linked to salt tolerance, offering a deeper 
understanding of how plants adapt to saline 
conditions.
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Molecular Mechanisms of Salt Tolerance
Salt stress in plants initiates a series of intricate 
physiological and molecular responses. To combat 
the harmful effects of salt stress, plants employ 
mechanisms such as ion homeostasis, osmotic 
regulation, and the activation of specific stress-
responsive signaling pathways.31 Rice, a crucial crop 
highly susceptible to salt stress, has been the subject 
of various studies. In a comprehensive approach, 
Kim (2023) identified potential salt tolerance genes 
in rice seedlings by combining transcriptome 
analysis with Genome-Wide Association Study 
(GWAS).22 This research successfully pinpointed 
several genes associated with salt tolerance, 
including those involved in signalling pathways, 
ion transport, and stress responses. The study 
illustrates the effectiveness of integrating GWAS 
and transcriptome data to unravel the genetic 
complexities of salt tolerance in crops, providing 
valuable targets for rice breeding programs aimed 
at enhancing salt tolerance.22 Yang and Guo (2018) 
conducted a comprehensive analysis of the molecular 
networks and signaling pathways involved in salt 
stress response, identifying key regulatory genes 
associated with ion balance, antioxidant defense, 
and osmotic regulation.116 These genes are often 
controlled by complex signaling cascades involving 
calcium-dependent protein kinases (CDPKs),  
mitogen-activated protein kinases (MAPKs), and 
transcription factors such as MYB and NAC.117  
Gaining insight into these pathways is crucial for 
developing strategies to enhance salt tolerance  
through molecular breeding or genetic engineering.118

Yang and Guo (2018) detailed the molecular 
mechanisms involved in plant responses to salt 
stress, particularly focusing on key signaling pathways 
like the SOS (Salt Overly Sensitive) pathway,  
which plays a critical role in maintaining ion balance 
by regulating sodium (Na+) ion transport.116 They 
also underscored the dual role of reactive oxygen 
species (ROS) as both signaling molecules and 
potential sources of cellular damage if not properly 
managed.31

Athar (2022) reviewed the role of various salt stress 
proteins in plants, highlighting the importance of pro-
teins such as dehydrins, LEA (Late Embryogenesis 
Abundant) proteins, and aquaporins.119 These 
proteins are essential for osmotic regulation, 

protection of cellular components, and maintaining 
water balance under saline conditions.119

Understanding the genetic basis of salt tolerance 
necessitates an in-depth exploration of the molecular 
mechanisms underlying plant responses to salt stress. 
In a similar vein, Razzaque  (2019) explored gene 
expression changes in a reciprocally crossed rice 
population subjected to salt stress.117 Their analysis 
identified genes with differential expression patterns  
linked to salt tolerance. These findings underscore 
the genetic variability in how plants respond to 
salt stress, offering valuable insights for breeding 
strategies aimed at enhancing salt tolerance in rice.

Salt Stress Proteins and their Functional Roles
Proteins play a crucial role in regulating how plants 
respond to salt stress. Athar (2022) provided an 
in-depth review of these stress-related proteins, 
highlighting their various functions, including the 
scavenging of reactive oxygen species (ROS), 
facilitating ion transport, and maintaining osmotic 
balance.119 The review underscored the importance 
of specific proteins, such as SOS (Salt Overly 
Sensitive) and HKT (High-affinity K+ Transporter), 
in maintaining ion homeostasis under salt stress. 
Identifying and characterizing these proteins not 
only provides insight into how plants adapt to 
saline conditions but also offers potential targets for 
improving salt tolerance in plants.

Gene Expression Under Salt Stress
Investigations into gene expression have significantly 
advanced our understanding of salt tolerance in plants.  
Razzaque (2019) performed a gene expression study  
on a reciprocally crossed rice population exposed 
to salt stress.117 Their findings revealed that 
several genes associated with ion transport, stress 
signaling, and metabolic pathways were differentially 
expressed under saline conditions. These insights 
underscore the critical role of gene expression 
studies in elucidating the genetic mechanisms of salt  
tolerance and provide valuable information for 
developing rice varieties with improved resistance 
to salt stress.

Genetic Engineering for Enhanced Salt Tolerance
The field of genetic engineering has introduced 
new strategies for boosting salt tolerance in plants 
through the incorporation of salt-tolerance genes 
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from various species. Munns (2005) explored 
the integration of these genes, emphasizing the 
need to combine physiological traits with genetic 
modifications.118 He suggested that a comprehensive 
understanding of the genetic basis of salt tolerance, 
along with the combined effects of multiple genes, 
could facilitate the development of crops resilient 
to saline conditions. Additionally, Zamanzadeh-
Nasrabadi (2023) reviewed the potential of bacterial 
genes in augmenting plant salt tolerance.120 They 
noted that incorporating bacterial genes could 
enhance osmolyte production, ion transport, and 
stress signaling, thus improving plant endurance 
under saline stress.

Conclusion and Future Perspective
Salinity poses a significant challenge globally, as 
it adversely affects the growth and development 
of plants and crops, leading to reduced yields and 
diminished agricultural productivity. The increasing 
salinization of soil, driven by both human activities 
and natural processes, exacerbates this problem. 
Therefore, it is crucial to develop effective strategies 
to mitigate the effects of salinity on agriculture.

Plants experience various detrimental effects from  
saline environments, including damage to cell 
membranes, increased oxidative stress, suppression 
of photosynthesis, osmotic stress, and imbalances 
in ionic concentrations. Despite these challenges, 
plants have evolved several mechanisms to 
counteract salinity. These include osmo-protection, 
which helps maintain cellular osmotic balance; 
the antioxidant defence system, which neutralizes 
harmful reactive oxygen species; and ionic 
homeostasis and compartmentalization, which 
manage the uptake, transport, and storage of ions 
to prevent toxic accumulations.

Addressing the salinity issue requires a multifaceted 
approach, combining insights from molecular 
biology, genetics, and biotechnology. Significant 
progress has been made in identifying genes 
associated with salt tolerance through techniques 
such as Genome-Wide Association Studies (GWAS) 
and transcriptome analysis. These advancements, 
alongside the potential applications of genetic 

engineering, present promising avenues for 
developing crops that can thrive in saline conditions. 
Future research should focus on the functional 
characterization of these candidate genes and 
explore multi-gene strategies to enhance salt 
tolerance across various plant species.

This review emphasizes the importance of ongoing 
research into salt tolerance genes, as they are 
crucial for tackling the challenges posed by saline 
environments on agricultural productivity. The past 
two decades have seen extensive research into 
plant responses to salinity and the mechanisms  
of tolerance. However, many aspects remain to be 
explored. Future studies should aim for a deeper 
understanding of the molecular and metabolic 
changes induced by salinity, which will be essential 
for developing innovative solutions to improve 
crop resilience and ensure sustainable agricultural 
practices in saline soils.
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