Introduction
Sesame (Sesamum indicum L.; 2n = 2x = 26) globally known as ‘sesame’, in India it is commonly known as ‘Til’ belongs to order Lamiales and family Pedaliaceae. A total 36 species have been identified in the genus, of which 22 species are from Africa, five from Asia, seven from both Africa and Asia and one species each from Crete and Brazil. There are three cytogenetic groups of which 2n = 26 consist of the cultivated S. indicum along with S. alatum, S. capense, S. schenckii, S. malabaricum; 2n = 32 consist of S. prostrate, S. laciniatum, S. angolense, S. angustifolium; while S. radiatum, S. occidentale and S. schinzianum belong to 2n = 64 group1. Among the cultivated group of species, the S. indicum is widely cultivated at globally. It is one of the oldest and most important traditional oilseed crops of the world. Sesame is called as the “Queen of oilseeds”. Sesame seeds have nutritional as well as medicinal value due to rich in protein, carbohydrate, fat, fiber, vitamins E, A and B complex and minerals viz., calcium, phosphorus, iron, copper, magnesium, zinc and potassium with high-unsaturated fatty acid (linolenic and tochopherol). Sesame is an important source of high quality oil and protein.2 The seeds are chemically composed of about 40-52 per cent oil, 20-27 per cent protein, 6-7 per cent moisture, 16 per cent carbohydrate and 6-8 per cent crude fiber. The oil consist of glycerides and fatty acid constituents chiefly oleic (40-48%), linolenic (30-45%), palmitic (8-10%) and stearic (4-8%). amino acids viz., argenine (12.5%), histidine (2.1%), lysine (2.9%), phenylalanine (6.2%), methionine (3.3%), leucine (8.9%), isolencine (3.9%), valine (3.5%) and threonine (3.6%) are commonly found in the sesame seed. In India, sesame is one of the most important oil seed crops grown after groundnut, rapeseed and mustard. It is cultivated in an area of 13.98 lakh hectares in India with an annual production of 4.18 lakh tonnes and productivity of 291 kg ha-1, While in Gujarat an estimated area is 1.09 lakh ha with annual production of 0.78 lakh tonnes and productivity of 723 kg/ha.3
Heterosis breeding has been a potential method of increasing yield in most of the cross as well as self fertilizing crops. Heterosis study provides information about probable gene action and helps in sorting out desirable genotypes. Hybridization in sesame for creation of variability has been recognized as a practical tool for improving yield and other important traits. For developing promising varieties through hybridization, a careful choice of parents and breeding methodology are a matter of great concern to the plant breeder.
Material and Methods
The experimental material comprised of eight parents (including check G.TIL 4) and their 28 half-diallel crosses. The 8 × 7 half diallel crosses were made during kharif–2017 at Castor-Mustard Research Station, S. D. Agricultural University, Sardarkrushinagar by manual crossing. The seeds of parental lines were maintained through selfing. A set of 36 genotypes comprising of eight parents (including check G.TIL 4) and their 28 F1 hybrids were sown in Randomized Block Design (RBD) with three replications, during kharif–2018. Each entry was sown in two rows of 3.0 m in length 45 × 15 cm spacing. The recommended agronomical practices and plant protection measures were adopted for raising a good crop. The observations were recorded both as visual assessment (days to flowering and days to maturity) and measurement on randomly selected five competitive individual plants (plant height, number of effective branch per plant, number of capsule per plant, capsule length, number of seed per capsule, 1000 seed weight, seed yield per plant, harvest index (%) and oil content (%). The replication wise mean values of each entry for the twelve traits were analyzed according to Randomized Block Design (RBD)4 and estimation of heterobeltiosis5 and economic heterosis.6 The replicated mean data were analyzed statistically using the software WINDOSTAT version 8.1.
Results and Discussion
The analysis of variance from the mean data (Table 1) revealed highly significant differences due to genotypes for all the traits. This suggest that parents and their hybrids under study possessed a sufficiently high amount of genetic variability. Further, partitioning of mean sum of square due to genotypes implied that the differences among parents were significant for all the traits excluding harvest index (%). The significant differences among parents showed greater diversity in the parental lines. In case of hybrids, significant differences were found for all the traits except days to maturity indicating varying performance of cross combinations. Mean sum of squares due to parents Vs hybrids were significant for all the traits exclusive of days to maturity, number of capsule per plant and seed yield per plant (g), which explained sufficient amount of heterosis was reflected in crosses for many of the yield attributing traits.
The mean performance of parents revealed that the parent G.TIL 10 was top ranking for seed yield per plant (g) and the number of effective branch per plant. This parental genotype also expressed good performance for various yield components, viz., number of seed per capsule, harvest index (%) and oil content (%). The parent SKT 1608 was found better for earliness, dwarfness and 1000 seed weight (g) (Table 2). The mean performance of hybrids disclosed that none of the hybrids were found superior for all the traits. The hybrid SKT 1608 × SKT 12-2, SKT 1608 × G.TIL 2 and SKT 1607 × G.TIL 2 recorded maximum seed yield per plant. (Table 2).
The data furnished in Table 3 implied that out of 28 F1 hybrids, 3 and 10 F1 hybrids registered significant and positive heterosis over better parent and standard check (G.TIL 4) for seed yield per plant (g). The cross SKT 1608 × SKT 12-2 recorded top ranking heterosis over better parent (38.76%) and standard parent (57.65 %). The range of heterobeltiosis and standard heterosis varied from -34.39 per cent (SKT 1607 × SKT 12-2) to 38.76 per cent (SKT 1608 × SKT 12-2) and -22.39 per cent (SKT 1607 × SKT 12-2) to 57.65 per cent (SKT 1608 × SKT 12-2), respectively. Previous workers also reported low to moderate estimates of heterobeltiosis and standard heterosis 7,8,9,10,11,12,13,14,15,16,17 and 18. A comparative study of best heterotic hybrids showed that for seed yield per plant (Table 4), F1 hybrids SKT 1608 × SKT 12-2 and SKT 1608 × G.TIL 2 manifested significant positive heterosis over both better parent and standard check or alone better or standard parent for various component traits viz., plant height (cm), capsule length, number of seed per capsule, harvest index, 1000 seed weight and oil content. The significant and desirable useful heterosis (Heterobeltiosis) and standard heterosis for components were also reported for different traits in sesame.19, 20, 21, 22, 23,24,25,26 and 27
Table 1: Analysis of variance (mean sum of square) for the experimental design of twelve traits in sesame
Sources of variation | d.f. | Days to flowering | Days to maturity | Plant height | Number of effective branch per plant | Number of capsule per plant | Capsule length | Number of seed per capsule | 1000 seed weight | Seed yield per plant | Harvest index | Oil content |
Replications | 2 | 0.56 | 1.44 | 143.59 | 0.56 | 37.39 | 0.03* | 2.06 | 0.00 | 5.90 | 9.41 | 0.05 |
Genotypes | 35 | 14.28** | 3.99** | 246.26** | 0.95** | 223.06** | 0.10** | 165.19** | 0.42** | 17.59** | 25.11** | 32.43** |
Parents | 7 | 26.99** | 11.23** | 343.21** | 1.31** | 290.68** | 0.23** | 234.32** | 0.48** | 8.35* | 3.02 | 63.09** |
Hybrids | 27 | 8.11** | 2.18 | 221.54** | 0.78** | 211.20** | 0.07** | 147.38** | 0.39** | 20.38** | 31.15** | 24.62** |
Parents Vs Hybrids | 1 | 92.02** | 2.15 | 234.93* | 2.97** | 70.03 | 0.13** | 162.00** | 0.68** | 7.08 | 16.74* | 28.45** |
Error | 70 | 1.74 | 1.59 | 57.24 | 0.25 | 53.13 | 0.01 | 0.80 | 0.00 | 3.06 | 3.69 | 0.26 |
* P ≤ 0.05, ** P ≤ 0.01 |
Table 2: Mean performance of the parents and their F1 hybrids for twelve traits in sesame for various traits
Sr. No. | Parents/hybrids | Days to flowering | Days to maturity | Plant height (cm) | Number of effective branch per plant | Number of capsule per plant | Capsule length (cm) | |
Parent: | ||||||||
1. | SKT 1602 | 46.33 | 92.67 | 110.67 | 3.07 | 36.53 | 3.39 | |
2. | SKT 1604 | 45.67 | 90.67 | 111.00 | 3.33 | 46.73 | 2.88 | |
3. | SKT 1607 | 48.00 | 93.33 | 137.67 | 4.20 | 57.67 | 2.71 | |
4. | SKT 1608 | 42.67 | 90.00 | 111.33 | 3.53 | 56.53 | 2.58 | |
5. | SKT 12-2 | 48.33 | 93.67 | 121.33 | 4.27 | 67.27 | 2.91 | |
6. | G.TIL 2 | 44.67 | 91.33 | 110.33 | 4.33 | 65.07 | 2.64 | |
7. | G.TIL 4 | 43.00 | 90.00 | 112.67 | 3.13 | 52.47 | 3.17 | |
8. | G.TIL 10 | 51.67 | 95.33 | 131.00 | 4.87 | 53.00 | 2.80 | |
Parental mean | 46.29 | 92.13 | 118.25 | 3.84 | 54.41 | 2.88 | ||
Hybrids: | ||||||||
9. | SKT 1602 × SKT 1604 | 45.33 | 91.33 | 117.67 | 2.93 | 42.40 | 3.11 | |
10. | SKT 1602 × SKT 1607 | 44.00 | 92.00 | 104.67 | 3.00 | 34.13 | 3.12 | |
11. | SKT 1602 × SKT 1608 | 42.33 | 92.33 | 106.00 | 3.13 | 63.53 | 3.24 | |
12. | SKT 1602 × SKT 12-2 | 45.00 | 93.00 | 117.00 | 3.20 | 45.73 | 3.01 | |
13. | SKT 1602 × G.TIL 2 | 44.00 | 91.67 | 113.33 | 2.87 | 44.27 | 2.80 | |
14. | SKT 1602 × G.TIL 4 | 42.67 | 91.33 | 115.00 | 3.20 | 47.93 | 3.20 | |
15. | SKT 1602 × G.TIL 10 | 44.33 | 92.67 | 129.00 | 4.27 | 56.60 | 3.05 | |
16. | SKT 1604 × SKT 1607 | 43.67 | 91.00 | 117.67 | 4.20 | 64.07 | 2.99 | |
17. | SKT 1604 × SKT 1608 | 42.67 | 92.00 | 125.33 | 3.53 | 56.47 | 2.95 | |
18. | SKT 1604 × SKT 12-2 | 45.00 | 92.67 | 127.33 | 2.73 | 35.40 | 3.06 | |
19. | SKT 1604 × G.TIL 2 | 44.33 | 91.33 | 119.33 | 3.00 | 44.47 | 3.05 | |
20. | SKT 1604 × G.TIL 4 | 46.00 | 93.00 | 121.33 | 3.20 | 57.93 | 2.89 | |
21. | SKT 1604 × G.TIL 10 | 48.00 | 92.67 | 137.67 | 4.20 | 67.07 | 2.59 | |
22. | SKT 1607 × SKT 1608 | 41.67 | 92.67 | 123.00 | 3.40 | 53.07 | 2.99 | |
23. | SKT 1607 × SKT 12-2 | 43.00 | 92.00 | 119.67 | 2.73 | 41.67 | 2.82 | |
24. | SKT 1607 × G.TIL 2 | 42.33 | 92.00 | 132.67 | 3.47 | 57.73 | 3.02 | |
25. | SKT 1607 × G.TIL 4 | 44.33 | 93.00 | 138.67 | 2.93 | 54.07 | 3.17 | |
26. | SKT 1607 × G.TIL 10 | 45.67 | 93.00 | 123.33 | 3.60 | 56.40 | 2.82 | |
27. | SKT 1608 × SKT 12-2 | 43.00 | 92.33 | 118.00 | 4.20 | 60.27 | 3.13 | |
28. | SKT 1608 × G.TIL 2 | 41.67 | 91.33 | 123.33 | 3.93 | 57.07 | 2.94 | |
29. | SKT 1608 × G.TIL 4 | 42.67 | 92.00 | 112.33 | 3.47 | 49.47 | 2.87 | |
30. | SKT 1608 × G.TIL 10 | 43.00 | 92.67 | 118.67 | 3.67 | 56.60 | 2.87 | |
31. | SKT 12-2 × G.TIL 2 | 46.00 | 94.00 | 121.33 | 2.93 | 45.27 | 2.90 | |
32. | SKT 12-2 × G.TIL 4 | 45.33 | 93.33 | 115.33 | 3.47 | 50.47 | 2.89 | |
33. | SKT 12-2 × G.TIL 10 | 47.33 | 94.33 | 134.67 | 4.47 | 57.40 | 2.91 | |
34. | G.TIL 2 × G.TIL 4 | 44.00 | 93.00 | 118.33 | 3.07 | 53.27 | 3.03 | |
35. | G.TIL 2 × G.TIL 10 | 42.00 | 92.33 | 125.00 | 3.67 | 54.80 | 2.92 | |
36. | G.TIL 4 × G.TIL 10 | 44.67 | 94.00 | 134.67 | 3.93 | 61.67 | 2.72 | |
Hybrid mean | 44.07 | 92.46 | 121.80 | 3.44 | 52.47 | 2.97 | ||
General mean | 44.56 | 92.38 | 121.00 | 3.53 | 52.90 | 2.95 | ||
Range | 41.67 to 51.67 | 90.00 to 95.33 | 104.67 to 138.67 | 2.73 to 4.87 | 34.13 to 67.27 | 2.58 to 3.39 | ||
S.Em± | 0.76 | 0.73 | 4.37 | 0.29 | 4.21 | 0.05 | ||
CD at 5% | 2.15 | 2.05 | 12.32 | 0.81 | 11.87 | 0.15 | ||
CV % | 2.96 | 1.36 | 6.25 | 14.03 | 13.78 | 3.11 | ||
Table 2 conti… | ||||||||
Sr. No. | Parents/hybrids | Number of seed per capsule | 1000 seed weight (g) | Seed yield per plant (g) | Harvest index (%) | Oil Content (%) | ||
Parent: | ||||||||
1. | SKT 1602 | 63.58 | 4.70 | 12.25 | 21.49 | 40.35 | ||
2. | SKT 1604 | 79.29 | 3.86 | 15.33 | 21.09 | 43.16 | ||
3. | SKT 1607 | 72.12 | 3.71 | 15.41 | 21.98 | 37.01 | ||
4. | SKT 1608 | 60.40 | 3.53 | 12.04 | 20.10 | 39.59 | ||
5. | SKT 12-2 | 51.82 | 4.16 | 14.80 | 21.22 | 47.30 | ||
6. | G.TIL 2 | 69.77 | 3.85 | 15.66 | 20.98 | 42.64 | ||
7. | G.TIL 4 | 70.08 | 3.54 | 13.03 | 23.57 | 39.11 | ||
8. | G.TIL 10 | 75.49 | 3.59 | 16.35 | 21.68 | 31.81 | ||
Parental mean | 67.82 | 3.87 | 14.36 | 21.51 | 40.12 | |||
Hybrids: | ||||||||
9. | SKT 1602 × SKT 1604 | 71.93 | 4.59 | 13.99 | 20.57 | 42.69 | ||
10. | SKT 1602 × SKT 1607 | 69.44 | 4.56 | 11.15 | 17.27 | 40.32 | ||
11. | SKT 1602 × SKT 1608 | 81.47 | 4.51 | 16.31 | 21.14 | 38.08 | ||
12. | SKT 1602 × SKT 12-2 | 63.51 | 3.75 | 11.84 | 19.72 | 37.25 | ||
13. | SKT 1602 × G.TIL 2 | 87.76 | 3.65 | 14.41 | 23.02 | 41.80 | ||
14. | SKT 1602 × G.TIL 4 | 60.42 | 4.10 | 11.90 | 20.84 | 42.89 | ||
15. | SKT 1602 × G.TIL 10 | 70.49 | 3.99 | 16.76 | 23.41 | 44.84 | ||
16. | SKT 1604 × SKT 1607 | 62.79 | 4.00 | 17.93 | 21.14 | 45.98 | ||
17. | SKT 1604 × SKT 1608 | 68.98 | 4.14 | 16.09 | 25.65 | 39.05 | ||
18. | SKT 1604 × SKT 12-2 | 81.61 | 3.97 | 11.79 | 21.34 | 40.49 | ||
19. | SKT 1604 × G.TIL 2 | 65.83 | 3.74 | 10.93 | 19.30 | 45.06 | ||
20. | SKT 1604 × G.TIL 4 | 71.35 | 3.73 | 14.55 | 20.90 | 41.03 | ||
21. | SKT 1604 × G.TIL 10 | 75.92 | 3.52 | 17.90 | 26.05 | 41.48 | ||
22. | SKT 1607 × SKT 1608 | 71.56 | 4.19 | 15.90 | 26.10 | 43.32 | ||
23. | SKT 1607 × SKT 12-2 | 60.53 | 4.36 | 10.11 | 13.17 | 38.66 | ||
24. | SKT 1607 × G.TIL 2 | 68.95 | 4.53 | 18.03 | 24.83 | 37.27 | ||
25. | SKT 1607 × G.TIL 4 | 78.38 | 4.48 | 17.81 | 21.10 | 36.40 | ||
26. | SKT 1607 × G.TIL 10 | 69.82 | 3.83 | 15.10 | 23.55 | 43.16 | ||
27. | SKT 1608 × SKT 12-2 | 69.51 | 4.74 | 20.54 | 26.83 | 41.34 | ||
28. | SKT 1608 × G.TIL 2 | 77.71 | 4.31 | 19.11 | 27.61 | 42.27 | ||
29. | SKT 1608 × G.TIL 4 | 58.88 | 4.53 | 13.88 | 18.55 | 40.10 | ||
30. | SKT 1608 × G.TIL 10 | 75.06 | 3.59 | 15.26 | 23.29 | 38.24 | ||
31. | SKT 12-2 × G.TIL 2 | 76.08 | 3.75 | 14.53 | 23.19 | 43.64 | ||
32. | SKT 12-2 × G.TIL 4 | 63.28 | 4.03 | 13.73 | 22.87 | 38.23 | ||
33. | SKT 12-2 × G.TIL 10 | 76.15 | 3.63 | 15.88 | 22.91 | 46.10 | ||
34. | G.TIL 2 × G.TIL 4 | 69.33 | 3.88 | 14.31 | 25.85 | 40.67 | ||
35. | G.TIL 2 × G.TIL 10 | 65.24 | 3.75 | 13.41 | 22.21 | 46.75 | ||
36. | G.TIL 4 × G.TIL 10 | 69.49 | 3.76 | 16.11 | 26.47 | 40.88 | ||
Hybrid mean | 70.77 | 4.06 | 14.97 | 22.46 | 41.36 | |||
General mean | 70.11 | 4.01 | 14.84 | 22.25 | 41.08 | |||
Range | 51.82 to 87.76 | 3.52 to 4.74 | 10.11 to 20.54 | 13.17 to 27.61 | 31.81 to 47.30 | |||
S.Em± | 0.52 | 0.02 | 1.01 | 1.11 | 0.29 | |||
CD at 5% | 1.46 | 0.05 | 2.85 | 3.13 | 0.83 | |||
CV % | 1.27 | 0.74 | 11.78 | 8.63 | 1.24 |
Table 3: Number of hybrids having significant heterotic effect in sesame for various traits
Traits | Over better parent | Over standard check | ||||||
+ve | -ve | Total | Range | +ve | -ve | Total | Range | |
Days to flowering | 03 | 05 | 08 | -10.42 to 6.98 | 07 | 00 | 07 | -3.10 to 11.63 |
Days to maturity | 10 | 00 | 10 | -1.43 to 4.44 | 17 | 00 | 17 | 1.11 to 4.81 |
Plant height | 10 | 00 | 10 | -5.85 to 24.02 | 07 | 00 | 07 | -7.10 to 23.08 |
Number of effective branch per plant | 00 | 14 | 14 | -35.94 to 2.13 | 05 | 00 | 05 | -12.77 to 42.55 |
Number of capsule per plant | 01 | 08 | 09 | -47.37 to 26.54 | 01 | 02 | 03 | -34.94 to 27.83 |
Capsule length | 05 | 11 | 16 | -17.32 to 11.70 | 00 | 17 | 17 | -18.38 to 2.21 |
Number of seed per plant | 07 | 16 | 23 | -20.82 to 28.13 | 10 | 08 | 18 | -15.98 to 25.23 |
1000 seed weight | 11 | 15 | 26 | -22.47 to 27.97 | 27 | 00 | 27 | -0.66 to 33.90 |
Seed yield per plant | 03 | 06 | 09 | -34.39 to 38.76 | 10 | 00 | 10 | -22.39 to 57.65 |
Harvest index | 05 | 03 | 08 | -40.07 to 31.64 | 02 | 05 | 07 | -44.12 to 17.14 |
Oil content | 08 | 15 | 23 | -21.26 to 16.60 | 20 | 06 | 26 | -6.94 to 19.53 |
Table 4: Comparision of top five heterotic crosses in sesame
Sr. No. | Hybrids | Heterosis over | Useful and significant heterobeltiosis / standard heterosis for components | |
Standard parent | Better parent | |||
1. | SKT 1608 × SKT 12-2 | 57.65** (20.54) | 38.76** | NEB, CL, NSC, TEST, HI, OIL |
2. | SKT 1608 × G.TIL 2 | 46.67** (19.11) | 20.04** | PH, CL, NSC, TEST, HI, OIL |
3. | SKT 1602 × SKT 1608 | 25.23** (16.31) | 33.13** | NSC, TEST |
4. | SKT 1607 × G.TIL 2 | 38.43** (18.03) | 15.18 | DAF, NEB, CL, TEST |
5. | SKT 1604 × SKT 1607 | 37.62** (17.93) | 16.33 | NEB, TEST, OIL |
Figure in the parentheses indicated mean performance for seed yield per plant.
* P ≤ 0.05, ** P ≤ 0.01
Where:
DAF | : | Days to flowering | PH | : | Plant height (cm) |
NEB | : | Number of effective branch per plant | CL | : | Capsule length (cm) |
NSC | : | Number of seed per capsule | TEST | : | 1000 seed weight (g) |
HI | : | Harvest index (%) | OIL | : | Oil content (%) |
Conclusion
The F1 hybrids SKT 1608 × SKT 12-2 and SKT 1608 × G.TIL 2 manifested significant and desirable heterosis for seed yield and other component traits over better parent and standard check (G.TIL 4). The hybrid SKT 1602 × SKT 1608 showed desirable heterosis for component traits like number of seed per capsuleand 1000 seed weight ; SKT 1607 × G.TIL 2 for days to flowering, number of effective branch per plant, capsule length and 1000 seed weight and SKT 1604 × SKT 1607 for number of effective branch per plant, 1000 seed weight and oil content. Heterosis and per se performance indicated that F1 hybrids SKT 1608 × SKT 12-2 and SKT 1608 × G.TIL 2 were found promising for commercial exploitation.
Acknowledgement
Authors are greatful to S.D. Agricultural University for providing fund under plan scheme (state level). We are also like to thank Research Scientist with all the supporting staff of Castor-Mustard Research Station for their kind support.
Funding
The research was carried out as a part of M.sc (Agri, Plant Breeding & Genetics) programme under S.D.Agricultural University and no funding was received for the same manuscript.
Conflict of Interest
The authors do not have any conflict of interest.
Reference
- Kobayashi, T., Kinoshita, M., Hattori, S.,Ogawa, T., Tsuboi, Y., Ishida, M., Ogava, S. and Sacto, H. Development of the sesame metalic fuel performance code. Nuclear Technology, 1990. 89 (2): 183-193.
- IPGRI and NBPGR (2004). Descriptors for sesame (Sesamum spp.). International Plant Genetic Resources Institute, Rome, Italy and National Bureau of Plant Genetic Resources, New Delhi, India.
- IOPEPC – Oil seed Database . Reported by Dr. Misra J. B. and Mr. Gawande, G. S. source: Directorate of Oilseeds Development, Hyderabad. Available at http://www.iopepc.org accessed on 16th March, 2018.
- Sukhatme, P. V. and Ambe, V. N.. Statistical methods for agricultural workers. 1985: 4th ed. ICAR, New Delhi.
- Fonseca, S. and Patterson, F. L. Hybrid vigour in a seven parent diallel cross in common wheat (Triticum aestivum L.). Crop science, 1968: 8: 85-95.
- Meredith, W. R. and Bridge, R. R. Heterosis and gene action in cotton (Gossypium hirsutum L.). Crop Science, 1972: 12: 304-310.
- Mothilal, A. and Manoharan, V. Heterosis and combining ability in sesame (Sesamum indicum L.). Crop Research, 2004:27 (2 & 3): 282-287.
- Kar, U. C.; Swain, D. and Mahapatra, J. R. Line × tester analysis in sesame (Sesamum indicum L.). Madras Agricultural Journal.2002:89 (1-3): 9-13.
- Yadav, L. N.; Tripathi, M. K.; Sikarwar, R. S. and Mishra A. K. Heterosis in sesame. Sesame and Safflower Newsletter 2005:20: 12-14.
- Singh, A. K.; Lal, J. P.; Kumar, H. and Agrawal, R. K. Heterosis in relation to combining ability for yield and its components in sesame (Sesamum indicum L.). Journal of Oilseeds Research2007: 24 (1): 51-55.
- Prajapati, N. N.; Patel, C. J.; Bhatt, A. B.; Prajapati, K. P. and Patel, K. M. Heterosis in sesame (Sesamum indicum L.). International Journal of Agricultural Science. 2010: 6 (1): 91-93.
- Parameshwarappa, S. G. and Palakshappa, M. G. Exploitation of heterosis for genetic enhancement of sesame (Sesamum indicum L.). Karnataka Journal of Agricultural Science. 2012: 26 (4): 551-553.
- Jatothu, J., Dangi, K. S. and Kumar, S. S.Evaluation of sesame crosses for heterosis of yield and yield attributing traits. Journal of Tropical Agriculture.2013: 51 (1-2): 84-91.
- 14. Duhoon, S. S. Exploitation of heterosis for raising productivity in sesame. Crop Science.2015: 37: 1-8.
- Rani, T. S.; Laxman, S.,Thippeswamy, S., Kiranbabu, T., Venkataiah, M. and Rao, M. P. Genetic studies for the exploitation of heterosis in sesame (Sesamum indicum L.). Sabrao Journal of Breeding and Genetics.2015: 47 (3): 231-237.
- Pawar, A. K. and Aher, B. M. Heterosis and combining ability in sesame (Sesamum indicum L.). Advance in Life Sciences2016: 5 (4): 2231-2235.
- Nayak, A. J.; Patel, S. R. and Shrivastva, A. Heterosis studies for yield and its components traits in sesame (Sesamum indicum L.). AGRES – An International e-Journa,2017: 6 (1): 38-48.
- Chaudhary, B. K.; Solanki, S. D.; Singh, S.; Prajapati, N. N. and Chaudhary, V. B. Heterosis studies for seed yield and its component in sesame (Sesamum indicum L.). International journal of Agriculture Sciences.2018: 10: 5383-5386.
- Saravanan, S. and Nadarajan, N. Studies on heterosis in sesame (Sesamum indicum L.). Indian Journal of Genetics.2002: 62 (3): 271-272.
- Singh, P. K. Heterosis and inbreeding depression in sesame (Sesamum indicum L.). Indian Journal of Genetics. 2002:62 (2): 169-170.
- Krishnaiah, G., Reddy, K. R. and Sekhar, M. R. Heterosis and combining ability in sesame (Sesamum indicum L.). Journal of Oilseeds Research.2003: 20 (2): 229-233.
- Mothilal, A. and Ganesan, K. N. Heterosis studies in sesame (Sesamum indicum L.). Agriculture Science Digest.2005: 25 (1): 74-76.
- Sundari, P. M. and Kamala, T. Heterosis in Sesamum indicum L. Asian Journal of Agricultural Sciences.2012:4 (4): 287-290.
- Parimala, K.,Swarnalatha, D. I.; Bharathi, V., Raghu, B., Srikrishnalatha, K. and Reddy, V. A.Heterosis for yield and its component traits in sesame (Sesamum indicum L.). International Journal of Applied Biology and Pharmaceutical Technology. 2013: 4 (4): 65-68.
- Azeez, M. A. and Morakinyo, J. A. Combining ability studies and potential for oil quality improvement in sesame (Sesamum indicum L.). Journal of Agroalimeay Processes and Technologies.(2014): 20 (1): 1-8.
- Aldaji, A. M. M. I., Noubissie, T. J. B., Njintang, Y. N., Nguimbou, R. M. and Bell, J. M. Diallel analysis of seed oil content in sesame. Journal of Global Bioscience.2015: 4 (3): 1735-1746.
- Hassan, M. S. and Sedeck, F. Sh.Combining ability and heterosis estimates in sesame. World Applied Sciences Journal. 2015: 33 (5): 690-698.